
Lecture 7
CS 111: Operating System Principles

Scheduling
3.0.0

Jon Eyolfson
October 14, 2021

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

cba

http://creativecommons.org/licenses/by-sa/4.0/


There are Preemptible and Non-preemptible Resources

A preemptible resource can be taken away and used for something else
e.g. a CPU

The resource is shared through scheduling

A non-preemptible resource can not be taken away without acknowledgment
e.g. disk space

The resource is shared through allocations and deallocations
Note: Parallel and distributed systems may allow you to allocate a CPU

1



A Dispatcher and Scheduler Work Together

A dispatcher is a low-level mechanism
Responsible for context switching

A scheduler is a high-level policy
Responsible for deciding which processes to run

2



The Scheduler Runs Whenever a Process Changes State

First let’s consider non-preemptable processes
Once the process starts, it runs until completion

In this case, the scheduler will only make a decision when the process terminates

Preemptive allows the operating system to run the scheduler at will
Check uname -v, your kernel should tell you it’s preemptable

3



Metrics

Minimize waiting time and response time
Don’t have a process waiting too long (or too long to start)

Maximize CPU utilization
Don’t have the CPU idle

Maximize throughput
Complete as many processes as possible

Fairness
Try to give each process the same percentage of the CPU

4



First Come First Served (FCFS)

The most basic form of scheduling

The first process that arrives gets the CPU

Processes are stored in a FIFO queue in arrival order

5



A Gantt Chart Illustrates the Schedule

Consider the following processes:

Process Arrival Time Burst Time
P1 0 7
P2 0 4
P3 0 1
P4 0 4

Assume, P1 → P2 → P3 → P4. For FCFS, our schedule is:

0 7 11 12 16

P1 P2

P3

P4

What is the average waiting time?

6



What Happens to Our Waiting Time with a Different Arrival Order

Consider the same processes:

Process Arrival Time Burst Time
P1 0 7
P2 0 4
P3 0 1
P4 0 4

Assume, P3 → P2 → P4 → P1. For FCFS, our schedule is:

0 1 5 9 16

P3

P1P2 P4

What is the average waiting time now?

7



Shortest Job First (SJF)

A slight tweak to FCFS, we always schedule the job with the shortest burst time first

We’re still assuming no preemption

8



SJF Minimizes the Average Wait Time over FCFS

Consider the same processes with different arrival times:

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

For SJF, our schedule is (arrival on top):

0 2 4 5 7 8 12 16

P1 P2

P3

P4

P1 P2 P3 P4

Average waiting time: 0+6+3+7
4 = 4

9



SJF is Not Practical

It is provably optimal at minimizing average wait time (if no preemption)

You will not know the burst times of each process
You could use the past to predict future executions

You may starve long jobs (they may never execute)

10



Shortest Remaining Time First (SRTF)

Changing SJF to run with preemptions requires another tweak

We’ll assume that our minimum execution time is one unit

Similar to SJF, this optimizes the average waiting time

11



SRTF Reduces the Average Wait Time Compared to SJF

Consider the same processes and arrival times as SJF:

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

For SRTF, our schedule is (arrival on top):

0 2 4 5 7 11

P1 P2

P3

P2 P4 P1

P1 P2 P3 P4

Average waiting time: 9+1+0+2
4 = 3

12



Round-Robin (RR)

So far we haven’t handled fairness (it’s a trade off with other metrics)

The operating system divides execution into time slices (or quanta)
An individual time slice is called a quantum

Maintain a FIFO queue of processes similar to FCFS
Preempt if still running at end of quantum and re-add to queue

What are practical considerations for determining quantum length?

13



RR with a Quantum Length of 3 Units

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

For RR, our schedule is (arrival on top, queue on bottom):

0 2 3 4 5 6 9 10 13 14 15

P1 P2 P1

P3

P4

P2 P1 P4

P1 P2 P3 P4

P1 P2 P2
P1

P1
P3

P1
P3
P4

P1
P3
P4
P2

P3
P4
P2
P1

P4
P2
P1

P2
P1
P4

P1
P4

P4

14



Metrics for RR (3 Unit Quantum Length)

Number of context switches: 7

Average waiting time: 8+8+5+7
4 = 7

Average response time: 0+1+5+5
4 = 2.75

Note: on ties (a new process arrives while one is preempted), favor the new one

15



RR with a Quantum Length of 1 Units

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

For RR, our schedule is (arrival on top, queue on bottom):

0 2 4 5

P1

P2 P1 P2 P3 P1 P4 P2 P1 P4 P2 P1 P4 P1 P4

P1 P2 P3 P4

P1 P1 P2
P1

P1
P2

P2
P3
P1

P3
P1
P4
P2

P1
P4
P2

P4
P2
P1

P2
P1
P4

P1
P4
P2

P4
P2
P1

P2
P1
P4

P1
P4

P4
P1

P1
P4

P4

16



Metrics for RR (1 Unit Quantum Length)

Number of context switches: 14

Average waiting time: 8+6+1+7
4 = 5.5

Average response time: 0+0+1+2
4 = 0.75

17



RR with a Quantum Length of 10 Units

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

For RR, our schedule is (arrival on top, queue on bottom):

0 2 4 5 7 11 12 16
P1 P2 P3 P4

P1 P2 P2
P3

P2
P3
P4

P3
P4

P4

P1 P2

P3

P4

18



Metrics for RR (10 Unit Quantum Length)

Number of context switches: 3

Average waiting time: 0+5+7+7
4 = 4.75

Average response time: 0+5+7+7
4 = 4.75

Note: in this case it’s the same as FCFS without preemptions

19



RR Performance Depends on Quantum Length and Job Length

RR has low response good interactivity
Fair allocation of CPU
Low average waiting time (when job lengths vary)

The performance depends on the quantum length
Too high and it becomes FCFS
Too low and there’s too many context switches (overhead)

RR has poor average waiting time when jobs have similar lengths

20



Scheduling Involves Trade-Offs

We looked at few different algorithms:
• First Come First Served (FCFS) is the most basic scheduling algorithm
• Shortest Job First (SJF) is a tweak that reduces waiting time
• Shortest Remaining Time First (SRTF) uses SJF ideas with preemptions
• SRTF optimizes lowest waiting time (or turnaround time)
• Round-robin (RR) optimizes fairness and response time

21



We Could Add Priorities

We may favor some processes over others
Assign each process a priority

Run higher priority processes first, round-robin processes of equal priority
Can be preemptive or non-preemptive

22



Priorities Can Be Assigned an Integer

We can pick a lower, or higher number, to mean high priority
In Linux -20 is the highest priority, 19 is the lowest

We may lead processes to starvation if there’s a lot of higher priority processes

One solution is to have the OS dynamically change the priority
Older processes that haven’t been executed in a long time increase priority

23



Priority Inversion is a New Issue

We can accidentally change the priority of a low priority process to a high one
This is caused by dependencies, e.g. a high priority depends a low priority

One solution is priority inheritance
Inherit the highest priority of the waiting processes
Chain together multiple inheritances if needed
Revert back to the original priority after dependency

24



A Foregound Process Can Recieve User Input, Background Can Not

Unix background process when: process group ID differs from its terminal group ID
You do not need to know this specific definition

The idea is to separate processes that users interact with:
Foreground processes are interactable and need good response time
Background processes may not need good response time, just throughput

25



We Can Use Multiple Queues for Other Purposes

We could create different queues for foreground and background processes:
Foreground uses RR
Background uses FCFS

Now we have to schedule between queues!
RR between the queues
Use a priority for each queue

26



Scheduling Can Get Complicated

There’s no “right answer”, only trade-offs

We haven’t talked about multiprocessor scheduling yet

We’ll assume symmetric multiprocessing (SMP)
All CPUs are connected to the same physical memory
The CPUs have their own private cache (at least the lowest levels)

27



One Approach is to Use the Same Scheduling for All CPUs

There’s still only one scheduler
It just keeps adding processes while there’s available CPUs

Advantages
Good CPU utilization
Fair to all processes

Disadvantages
Not scalable (everything blocks on global scheduler)
Poor cache locality

This was the approach in Linux 2.4

28



We Can Create Per-CPU Schedulers

When there’s a new process, assign it to a CPU
One strategy is to assign it to the CPU with the lowest number of processes

Advantages
Easy to implement
Scalable (there’s no blocking on a resource)
Good cache locality

Disadvantages
Load imbalance

Some CPUs may have less processes, or less intensive ones

29



We Can Compromise between Global and Per-CPU

Keep a global scheduler that can rebalance per-CPU queues
If a CPU is idle, take a process from another CPU (work stealing)

You may want more control over which processes can switch
Some may be more sensitive to caches

Use processor affinity
The preference of a process to be scheduled on the same core

This is a simplified version of the O(1) scheduler in Linux 2.6

30



Another Strategy is “Gang” Scheduling

Multiple processes may need to be scheduled simultaneously

The scheduler on each CPU cannot be completely independent

“Gang Scheduling” (Coscheduling)
Allows you to run a set of processes simultaneously (acting as a unit)

This requires a global context-switch across all CPUs

31



Real-Time Scheduling is Yet Another Problem

Real-time means there are time constraints, either for a deadline or rate
e.g. audio, autopilot

A hard real-time system
Required to guarantee a task completes within a certain amount of time

A soft real-time system
Critical processes have a higher priority and the deadline is met in practice

Linux is an example of soft real-time

32



Linux Also Implements FCFS and RR Scheduling

You can search the source tree: FCFS (SCHED_FIFO) and RR (SCHED_RR)

Use a multilevel queue scheduler for processes with the same priority
Also let the OS dynamically adjust the priority

Soft real-time processes:
Always schedule the highest priority processes first

Normal processes:
Adjust the priority based on aging

33



Real-Time Processes Are Always Prioritized

The soft real-time scheduling policy will either be SCHED_FIFO or SCHED_RR
There are 100 static priority levels (0—99)

Normal scheduling policies apply to the other processes (SCHED_NORMAL)
By default the priority is 0
Priority ranges from [−20, 19]

Processes can change their own priorities with system calls:
nice, sched_setscheduler

34



Linux Scheduler Evolution

2.4—2.6, a O(N) global queue
Simple, but poor performance with multiprocessors and many processes

2.6—2.6.22, a per-CPU run queue, O(1) scheduler
Complex to get right, interactivity had issues
No guarantee of fairness

2.6.23—Present, the completely fair scheduler (CFS)
Fair, and allows for good interactivity

35



The O(1) Scheduler Has Issues with Modern Processes

Foreground and background processes are a good division
Easier with a terminal, less so with GUI processes

Now the kernel has to detect interactive processes with heuristics
Processes that sleep a lot may be more interactive

This is ad hoc, and could be unfair

How would we introduce fairness for different priority processes?
Use different size time slices
The higher the priority, the larger the time slice

There are also situations where this ad hoc solution could be unfair

36



Ideal Fair Scheduling

Assume you have an infinitely small time slice
If you have n processes, each runs at 1

n rate

1 Process

3 Processes

CPU usage is divided equally among every process

37



Example IFS Scheduling

Consider the following processes:

Process Arrival Time Burst Time
P1 0 8
P2 0 4
P3 0 16
P4 0 4

Assume that each vertical slice can execute 4 time units.
Each box represents the time units spend executing

P1

P2

P3

P4

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

6

6

8

8 12 16

0 16 24 32

38



IFS is the Fairest but Impractical Policy

This policy is fair, every process gets an equal amount of CPU time
Boosts interactivity, has the ideal response time

However, this would perform way too many context switches

You have to constantly scan all processes, which is O(N)

39



Completely Fair Scheduler (CFS)

For each runnable process, assign it a “virtual runtime”
At each scheduling point where the process runs for time t

Increase the virtual runtime by t× weight (based on priority)

The virtual runtime monotonically increases
Scheduler selects the process based on the lowest virtual runtime

Compute its dynamic time slice based on the IFS

Allow the process to run, when the time slice ends repeat the process

40



CFS is Implemented with Red-Black Trees

A red-black tree is a self-balancing binary search tree
Keyed by virtual runtime

O(lgN) insert, delete, update
O(1) find minimum

The implementation uses a red-black tree with nanosecond granularity
Doesn’t need to guess the interactivity of a process

CFS tends to favour I/O bound processes by default
Small CPU bursts translate to a low virtual runtime

It will get a larger time slice, in order to catch up to the ideal

41



Scheduling Gets Even More Complex

There are more solutions, and more issues:
• Introducing priority also introduces priority inversion
• Some processes need good interactivity, others not so much
• Multiprocessors may require per-CPU queues
• Real-time requires predictability
• Completely Fair Scheduler (CFS) tries to model the ideal fairness

42


