
CS 111: Operating System Principles
Lab 2
You Spin Me Round Robin 2.0.1

Jon Eyolfson
July 19, 2021
Due: July 30, 2021 at midnight PST

In this lab you’ll be writing the implementation for round robin scheduling for a given workload and quantum length. You’ll
be given a basic skeleton that parses an input file and command line arguments. You’re expected to understand how you would
implement round robin if you were to implement it yourself in a kernel (which means doing it in C). The lab section in week 5
will give a quick introduction into how to use the C style linked lists (if you’re unfamiliar) and the structure of the skeleton code.

Additional APIs. You may need a doubly linked list for your implement. For this lab you should useTAILQ fromsys/queue.h.
Use man 3 tailq to see all of the macros you can use. There’s already a list created for you called process_list with a
TAILQ entry name of pointers. You should not have to include any more headers or use any additional APIs, besides adding
your code.

Starting the lab. Run the following command to get the skeleton for Lab 2: git pull upstream main. You should be
able to run make in the lab-02 directory to create a rr executable, and then make clean to remove all binary files. There
is also an example processes.txt file in your lab directory. The rr executable takes a file path as the first argument, and a
quantum length as the second. For example, you can run: ./rr processes.txt 3.

Files to modify. You should only be modifying rr.c and README.md in the lab-02 directory.

Your task. You should only add additional fields to struct process and add your code to main between the comments in
the skeleton. You may add functions to call from main if you wish, but calls should only be between the comments. We assume
a single time unit is the smallest atomic unit (we cannot split it even smaller). You should ensure your scheduler calculates
the total waiting time and total response time to the variables total_waiting_time and total_response_time. The
program then outputs the average waiting time and response time for you. Finally, fill in your README.md so that you could
use your program without having to use this document.

Errors. All the allocations and input are handled for you, so there should be no need to handle any errors. You may assume
integer overflows will not happen with a valid schedule.

Tips. You should ensure your implementation works with the examples in Lecture 7.

Example output. The process.txt file is the example from Lecture 7. You should be able run:

> ./rr processes.txt 3
Average waiting time: 7.00
Average response time: 2.75

Submission. Simply push your code using git push origin main (or simply git push). For late days will we look at
the timestamp on our server. We will never use your commit times as proof of submission, only when you push your code to
the course Git server.

1


