
CS 111: Operating System Principles
Lab 3
Hash Hash Hash 2.0.0

Jon Eyolfson
August 2, 2021
Due: August 13, 2021 at 11:59 PM PST

In this lab you’ll be making a hash table implementation safe to use concurrently. You’ll be given a serial hash table im-
plementation, and two additional hash table implementations to modify. You’re expected to implement two locking strategies
and compare them with the base implementation. The hash table implementation uses separate chaining to resolve collisions.
Each cell of the hash table is a singly linked list of key/value pairs. You are not to change the algorithm, only add mutex locks.
Note that this is basically the implementation of Java concurrent hash tables, except they have an optimization that doesn’t
create a linked list if there’s only one entry at a hash location.

Additional APIs. Similar to Lab 2, the base implementation uses a linked list, but instead of TAILQ, it uses SLIST. You
should note that the SLIST_ functions modify the pointers field of struct list_entry. For your implementation you
should only use pthread_mutex_t, and the associated init/lock/unlock/destroy functions. You will have to add the proper
#include yourself.

Starting the lab. Run the following command to get the skeleton for Lab 3: git pull upstream main. You should be able
to runmake in thelab-03directory to create ahash-table-tester executable, and thenmake clean to remove all binary
files. The executable takes two command link arguments: -t changes the number of threads to use (default 4), and -s changes
the number of hash table entries to add per thread (default 25,000). For example you can run: ./hash-table-tester -t
8 -s 50000.

Files to modify. You should only be modifying hash-table-v1.c, hash-table-v2.c, and README.md in the lab-03
directory.

Tester Code. The tester code generates consistent entries in serial such that every run with the same -t and -s flags will
receive the same data. All hash tables have room for 4096 entries, so for any sufficiently large number of additions, there will
be collisions. The tester code runs the base hash table in serial for timing comparsions, and the other two versions with the
specified number of threads. For each version it reports the number of µs per implementation. It then runs a sanity check, in
serial, that each hash table contains all the elements it put in. By default your hash tables should run -t times faster (assuming
you have that number of cores). However, you should have missing entries (we made it fail faster!). Correct implementations
should at least have no entries missing in the hash table. However, just because you have no entries missing, you still may have
issues with your implementation (concurrent programming is significantly harder).

Your task. Using onlypthread_mutex_*, you should create two thread safe versions of the hash table “add entry” functions.
You only have to add locking calls to hash_table_v1_add_entry and hash_table_v2_add_entry, all other functions
are called serially, mainly for sanity checks. By default there is a data race finding and adding entries to the list. You’ll need to
fill in your README.md completely. Most sections are what you expect from previous labs, however there is more to add for
this lab (explained below).

For the first version, v1, you should only be concerned with correctness. Create a single mutex, only for v1, and make
hash_table_v1_add_entry thread safe by adding the proper locking calls. Remember, you should only modify code in
hash-table-v1.c. You’ll have to explain why your implementation is correct in your README.md. You should test it versus
the base hash table implementation and also add your findings to README.md.

For the second version, v2, you should be concerned with correctness and performance. You can now create as many
mutexes as you like in hash-table-v2.c. Make hash_table_v2_add_entry thread safe by adding the proper locking
calls. Similar to the first version, you’ll need to explain why your implementation is correct, test it’s performance against the
previous implementations, and add your findings to README.md.

1



In both cases you may add fields to any hash table struct: the hash table, hash_table_entry, or list_entry. You
code changes should not modify contains or get_value. Any other code modifications are okay. However, you should not
change any functionality of the hash tables.

Errors. You will need to check for errors for anypthread_mutex_* functions you use. You may simply exitwith the proper
error code. You are expected to destroy any locks you create. The given code passes valgrind with no memory leaks, you
should not create any.

Tips. Since this is a lab about concurrency and parallelism, you may want to significantly increase the number of cores given
to your virtual machine, or run your code on a Linux machine with more cores.

Example output. You should be able run:

> ./hash-table-tester -t 8 -s 50000
Generation: 130,340 usec
Hash table base: 1,581,974 usec
- 0 missing

Hash table v1: 359,149 usec
- 28 missing

Hash table v2: 396,051 usec
- 24 missing

Submission. Simply push your code using git push origin main (or simply git push). For late days we will look at
the timestamp on our server. We will never use your commit times as proof of submission, only when you push your code to
the course Git server. Remember, you must make your own commits!

2


