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There are 4 Major Concepts in This Course

You’ll learn how the following applies to operating systems:
• Virtualization
• Concurrency
• Persistence
• Security (out of scope, somewhat touched on in Virtual Machines)
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Kernel Interfaces Operate Between CPU Mode Boundaries

The lessons from the lecture:
• Code running in kernel mode is part of your kernel
• Different kernel architectures shift how much code runs in kernel mode
• System calls are the interface between user and kernel mode
• Everything involved to define a simple “Hello world” (in 178 bytes)

• Difference between API and ABI
• How to explore system calls
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Operating Systems Provide the Foundation for Libraries

We learned:
• Dynamic libraries and a comparison to static libraries

• How to manipulate the dynamic loader
• Example of issues from ABI changes without API changes
• Standard file descriptor conventions for UNIX
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The Operating System Creates and Runs Processes

The operating system has to:
• Loads a program, and create a process with context
• Maintain process control blocks, including state
• Switch between running processes using a context switch
• Unix kernels start an init process
• Unix processes have to maintain a parent and child relationship
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We Used System Calls to Create Processes

You should be comfortable with:
• execve
• fork
• wait

This includes understanding processes and their relationships
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We Explored Basic IPC in an Operating System

Some basic IPC includes:
• read and write through file descriptors (could be a regular file)
• Redirecting file descriptors for communcation
• Pipes (which you’ll explore)
• Signals
• Shared Memory
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Scheduling Involves Trade-Offs

We looked at few different algorithms:
• First Come First Served (FCFS) is the most basic scheduling algorithm
• Shortest Job First (SJF) is a tweak that reduces waiting time
• Shortest Remaining Time First (SRTF) uses SJF ideas with preemptions
• SRTF optimizes lowest waiting time (or turnaround time)
• Round-robin (RR) optimizes fairness and response time
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Scheduling Gets Even More Complex

There are more solutions, and more issues:
• Introducing priority also introduces priority inversion
• Some processes need good interactivity, others not so much
• Multiprocessors may require per-CPU queues
• Real-time requires predictability
• Completely Fair Scheduler (CFS) tries to model the ideal fairness

8



Page Tables Translate Virtual to Physical Addresses

The MMU is the hardware that uses page tables, which may:
• Be a single large table (wasteful, even for 32-bit machines)
• Be a multi-level to save space for sparse allocations
• Use the kernel allocate pages from a free list
• Use a TLB to speed up memory accesses
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Page Replacement Algorithms Aim to Reduce Page Faults

We saw the following:
• Optimal (good for comparison but not realistic)
• Random (actually works surprisingly well, avoids the worst case)
• FIFO (easy to implement but Bélády’s anomaly)
• LRU (gets close to optimal but expensive to implement)
• Clock (a decent approximation of LRU)
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Both Processes and (Kernel) Threads Enable Parallelization

We explored threads, and related them to something we already know (processes)
• Threads are lighter weight, and share memory by default
• Each process can have multiple (kernel) threads
• Most implementations use one-to-one user-to-kernel thread mapping
• The operating system has to manage what happens during a fork, or signals
• We now have synchronization issues
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We Want Critical Sections to Protect Against Data Races

We should know what data races are, and how to prevent them:
• Mutex or spinlocks are the most straightforward locks
• We need hardware support to implement locks
• We need some kernel support for wake up notifications
• If we know we have a lot of readers, we should use a read-write lock
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We Explored More Advanced Locking

Before we did mutual exclusion, now we can ensure order
• Semaphores are an atomic value that can be used for signaling
• Condition variables are clearer for complex condition signaling
• Locking granularity matters, you’ll find out in Lab 3
• You must prevent deadlocks
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The Kernel Has To Implement It’s Own Memory Allocations

The concepts are the same for user space memory allocation
(the kernel just gives them more contiguous virtual memory pages):
• There’s static and dynamic allocations
• For dynamic allocations, fragmentation is a big concern
• Dynamic allocation returns blocks of memory

• Fragmentation between blocks is external
• Fragmentation within a blocks is internal

• There’s 3 general allocation strategies for different sized allocations
• Best fit
• Worst fit
• First fit

• Buddy allocator is a real world restricted implementation
• Slab allocator takes advantage of fixed sized objects to reduce fragmentation

14



Disks Enable Persistence

We explored two kinds of disks: SSDs and HDDs
• Magnetic disks have poor random access (need to be scheduled)
• Shortest Positioning Time First (SPTF) is the best scheduling for throughput
• SSDs are more like RAM except accessed in pages and blocks
• SSDs also need to work with the OS for best performance (TRIM)
• Use RAID to tolerate failures and improve performance using multiple disks
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Filesystems Enable Persistence

They describe how files are stored on disks:
• API-wise you can open files, and change the position to read/write at
• Each process has a local open file and there’s a global open file table
• There’s multiple allocation strategies: contiguous, linked, FAT, indexed
• Linux uses a hybrid inode approach
• Everything is a file on UNIX, names in a directory can be hard or soft links
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Distributed Systems Start with Sockets

There’s networking and distributed systems courses!

However, today we learned the basics:
• Sockets are IPC across physical machines

• Sockets require an address (e.g. local and IPv4/IPv6)
• There are two types of sockets: stream and datagram
• Servers need to bind to an address, listen, and accept connections
• Clients need to connect to an address

• Networked file systems (NFS)
• Distributed file systems (GFS)
• Denial-of-service attacks are a unique concern
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Virtual Machines Virtualize a Physical Machine

They allow multiple operating systems to share the same hardware
• Virtual machines provide isolation, the hypervisor allocates resources
• Type 2 hypervisors are slower due to trap-and-emulate and binary translation
• Type 1 hypervisors are supported by hardware, IOMMU speeds up devices
• Hypervisors may overcommit resources and need to physically move VM
• Containers aim to have the benefits of VMs, without the overhead
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Thank you!
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