
Lecture 5
CS 111: Operating System Principles

Process API
2.0.0

Jon Eyolfson
July 6, 2021

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

cba

http://creativecommons.org/licenses/by-sa/4.0/


Linux Terminology Is Slightly Different

You can look at a process’ state by reading /proc/<pid>/state
Replace <pid> with the process ID

R: Running and runnable [Running and Waiting]
S: Interruptible sleep [Blocked]
D: Uninterruptible sleep [Blocked]
T: Stopped
Z: Zombie

The kernel lets you explicitly stop a process to prevent it from running
You or another process must explicitly continue it

1



On POSIX Systems, You Can Find Documentation Using man

We’ll be using the following APIs:
• execve
• fork
• wait

You can use man <function> to look up documentation,
or man <number> <function>

2: System calls
3: Library calls

2



execve Loads Another Program, and Replaces Process with A New One

execve has the following API:
• pathname: Full path of the program to load
• argv: Array of strings (array of characters), terminated by a null pointer

Represents arguments to the process
• envp: Same as argv

Represents the environment of the process
• Returns an error on failure, does not return if successful

3



execve-example.c Turns the Process into ls

int main(int argc, char *argv[]) {
printf("I'm going to become another process\n");
char *exec_argv[] = {"ls", NULL};
char *exec_envp[] = {NULL};
int exec_return = execve("/usr/bin/ls", exec_argv, exec_envp);
if (exec_return == -1) {
exec_return = errno;
perror("execve failed");
return exec_return;

}
printf("If execve worked, this will never print\n");
return 0;

}

4



fork Creates a New Process, A Copy of the Current One

fork as the following API:
• Returns the process ID of the newly created child process

-1: on failure
0: in the child process
>0: in the parent process

There are now 2 processes running
Note: they can access the same variables, but they’re separate

Operating system does “copy on write” to maximize sharing

5



fork-example.c Has One Process Execute Each Branch
int main(int argc, char *argv[]) {
pid_t pid = fork();
if (pid == -1) {
int err = errno;
perror("fork failed");
return err;

}
if (pid == 0) {
printf("Child returned pid: %d\n", pid);
printf("Child pid: %d\n", getpid());
printf("Child parent pid: %d\n", getppid());

}
else {
printf("Parent returned pid: %d\n", pid);
printf("Parent pid: %d\n", getpid());
printf("Parent parent pid: %d\n", getppid());

}
return 0;

} 6



orphan-example.c The Parent Exits Before the Child, init Cleans Up

int main(int argc, char *argv[]) {
pid_t pid = fork();
if (pid == -1) {
int err = errno;
perror("fork failed");
return err;

}
if (pid == 0) {
printf("Child parent pid: %d\n", getppid());
sleep(2);
printf("Child parent pid (after sleep): %d\n", getppid());

}
else {
sleep(1);

}
return 0;

}

7



zombie-example.c The Parent Monitors the Child To Check Its State

pid_t pid = fork();
// Error checking
if (pid == 0) {
sleep(2);

}
else {
// Parent process
int ret;
sleep(1);
printf("Child process state: ");
ret = print_state(pid);
if (ret < 0) { return errno; }
sleep(2);
printf("Child process state: ");
ret = print_state(pid);
if (ret < 0) { return errno; }

}

8



You Need to Call wait on Child Processes

wait as the following API:
• status: Address to store the wait status of the process
• Returns the process ID of child process

-1: on failure
0: for no blocking calls with no child changes
>0: the child with a change

The wait status contains a bunch of information, including the exit code
Use man wait to find all the macros to query wait status

You can use waitpid to wait on a specific child process

9



wait-example.c Blocks Until The Child Process Exists, and Cleans Up
int main(int argc, char *argv[]) {
pid_t pid = fork();
if (pid == -1) {
return errno;

}
if (pid == 0) {
sleep(2);

}
else {
printf("Calling wait\n");
int wstatus;
pid_t wait_pid = wait(&wstatus);
if (WIFEXITED(wstatus)) {
printf("Wait returned for an exited process! pid: %d, status: %d\n",

wait_pid, WEXITSTATUS(wstatus));
}

}
return 0;

} 10



We Used System Calls to Create Processes

You should be comfortable with:
• execve
• fork
• wait

This includes understanding processes and their relationships

11


