
Lecture 8
CS 111: Operating System Principles

Page Tables
2.0.1

Jon Eyolfson
July 15, 2021

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

cba

http://creativecommons.org/licenses/by-sa/4.0/


Virtualization Fools Something into Thinking it Has All Resources

“LibreOffice Memory”

0x0000000000080000

0x00000000FFFF0000

Start

“Firefox Memory”

0x0000000000080000

0x00000000FFFF0000

Start

1



Virtual Memory Checklist

□ Multiple processes must be able to co-exist
□ Processes are not aware they are sharing physical memory
□ Processes cannot access each others data (unless allowed explicitly)
□ Performance close to using physical memory
□ Limit the amount of fragmentation (wasted memory)

2



Memory Management Unit (MMU)

Maps virtual address to physical address
Also checks permissions

One technique is to divide memory up into fixed-size pages (typically 4096 bytes)
A page in virtual memory is called a page
A page in physical memory is called a frame

3



Segmentation or Segments are Coarse Grained

Divide the virtual address space into segments for: code, data, stack, and heap
Note: this looks like an ELF file, large sections of memory with permissions

Each segment is a variable size, and can be dynamically resized
This is an old legacy technique that’s no longer used

Segments can be large and very costly to relocate
It also leads to fragmentation (gaps of unused memory)

No longer used in modern operating systems

4



Segmentation Details

Each segment contains a: base, limit, and permissions
You get a physical address by using: segment selector:offset

The MMU checks that your offset is within the limit (size)
If it is, it calculates base + offset, and does permission checks

Otherwise, it’s a segmentation fault

For example 0x1:0xFF with segment 0x1 base = 0x2000, limit = 0x1FF
Translates to 0x20FF

Note: Linux sets every base to 0, and limit to the maximum amount

5



You Typically Do Not Use All 64 Virtual Address Bits

CPUs may have different levels of virtual addresses you can use
Implementation ideas are the same

We’ll assume a 39 bit virtual address space used by RISC-V and other architectures
Allows for 512 GiB of addressable memory (called Sv39)

Implemented with a page table indexed by Virtual Page Number (VPN)
Looks up the Physical Page Number (PPN)

6



The Page Table Translates Virtual to Physical Addresses

Virtual address

Physical Address

12

Offset

12

PPN Flags

0

1

10

Page table

27

EXT

2^2744

44

Index

25

64

56

© MIT https://github.com/mit-pdos/xv6-riscv-book/ 7

https://github.com/mit-pdos/xv6-riscv-book/


The Kernel Handles Translating Virtual Addresses

Considering the following page table:

VPN PPN
0x0 0x1
0x1 0x4
0x2 0x3
0x3 0x7

We would get the following virtual → physical address translations:

0x0AB0→ 0x1AB0
0x1FA0→ 0x4FA0
0x2884→ 0x3884
0x32D0→ 0x72D0

8



Page Translation Example Problem

Assume you have a 8-bit virtual address, 10-bit physical address
and each page is 64 bytes

• How many virtual pages are there?

28

26 = 4

• How many physical pages are there?

210

26 = 16

• How many entries are in the page table?

4

• Given the page table is [0x2, 0x5, 0x1, 0x8]
what’s the physical address of 0xF1?

0x231

9



Page Translation Example Problem

Assume you have a 8-bit virtual address, 10-bit physical address
and each page is 64 bytes

• How many virtual pages are there? 28

26 = 4

• How many physical pages are there? 210

26 = 16
• How many entries are in the page table? 4
• Given the page table is [0x2, 0x5, 0x1, 0x8]

what’s the physical address of 0xF1?
0x231

9



The Page Table Entry (PTE) Also Stores Flags in the Lower Bits

 

Physical Page Number

6

A

5 4 3

U

2

W

1

V

07891063

V
R
W
X
U

A
D

- Valid
- Readable
- Writable
- Executable
- User

- Accessed
- Dirty (0 in page directory)

Virtual address Physical Address
129

L1 L0 Offset

12

PPN Offset

PPN Flags

0

1

10

Page Directory

satp

L2

PPN Flags

0

1

44 10

Page Directory

PPN Flags

0

1

511
10

Page Directory

99

EXT
9

511

511

44

44

44

D U X RG

A - Accessed
-G - Global

RSW

Reserved for supervisor software

53

Reserved

© MIT https://github.com/mit-pdos/xv6-riscv-book/

The MMU which uses the page table checks these flags
We’ll focus on the first 5 flags

10

https://github.com/mit-pdos/xv6-riscv-book/


Each Process Gets Its Own Virtual Address Space

0

 

user text
and data

user stack

heap

MAXVA
trampoline
trapframe

© MIT https://github.com/mit-pdos/xv6-riscv-book/

11

https://github.com/mit-pdos/xv6-riscv-book/


Each Process Gets Its Own Page Table

When you fork a process, it will copy the page table from the parent
Turn off the write permission so the kernel can implement copy-on-write

The problem is there are 227 entries in the page table, each one is 8 bytes
This means the page table would be 1 GiB

Note that RISC-V translates a 39-bit virtual to a 56-bit physical address
It has 10 bits to spare in the PTE and could expand
Page size is 4096 bytes (size of offset field)

12



You May Be Thinking That Seems Like A Lot of Work

In Lab 1, we’re doing a fork followed by exec why do we need to copy the page
tables?

We don’t! There’s a system call for that — vfork

vfork shares all memory with the parent
It’s undefined behavior to modify anything

Only used in very performance sensitive programs

13



Multi-Level Page Tables Save Space for Sparse Allocations

 

Physical Page Number

6

A

5 4 3

U

2

W

1

V

07891063

V
R
W
X
U

A
D

- Valid
- Readable
- Writable
- Executable
- User

- Accessed
- Dirty (0 in page directory)

Virtual address Physical Address
129

L1 L0 Offset

12

PPN Offset

PPN Flags

0

1

10

Page Directory

satp

L2

PPN Flags

0

1

44 10

Page Directory

PPN Flags

0

1

511
10

Page Directory

99

EXT
9

511

511

44

44

44

D U X RG

A - Accessed
-G - Global

RSW

Reserved for supervisor software

53

Reserved

© MIT https://github.com/mit-pdos/xv6-riscv-book/
14

https://github.com/mit-pdos/xv6-riscv-book/


For RISC-V Each Level Occupies One Page

There are 512 (29) entries of 8 bytes(23) each, which is 4096 bytes

The PTE for L(N) points to the page table for L(N-1)

You follow these page tables until L0 and that contains the PPN

15



Consider Just One Additional Level

Assume our process uses just one virtual address at 0x3FFFF008
or 0b11_1111_1111_1111_1111_0000_0000_1000
or 0b111111111_111111111_000000001000

We’ll just consider a 30-bit virtual address with a page size of 4096 bytes
We would need a 2 MiB page table if we only had one (218 × 23)

Instead we have a 4 KiB L1 page table (29 × 23) and a 4 KiB L0 page table
Total of 8 KiB instead of 2 MiB

Note: worst case if we used all virtual addresses we would consume 2 MiB + 4 KiB

16



Translating 3FFFF008 with 2 Page Tables

Consider the L1 table with the entry:

Index PPN
511 0x8

Consider the L0 table located at 0x8000 with the entry:

Index PPN
511 0xCAFE

The final translated physical address would be: 0xCAFE008

17



Processes Use A Register Like satp to Set the Root Page Table

 

Physical Page Number

6

A

5 4 3

U

2

W

1

V

07891063

V
R
W
X
U

A
D

- Valid
- Readable
- Writable
- Executable
- User

- Accessed
- Dirty (0 in page directory)

Virtual address Physical Address
129

L1 L0 Offset

12

PPN Offset

PPN Flags

0

1

10

Page Directory

satp

L2

PPN Flags

0

1

44 10

Page Directory

PPN Flags

0

1

511
10

Page Directory

99

EXT
9

511

511

44

44

44

D U X RG

A - Accessed
-G - Global

RSW

Reserved for supervisor software

53

Reserved

© MIT https://github.com/mit-pdos/xv6-riscv-book/
18

https://github.com/mit-pdos/xv6-riscv-book/


Page Allocation Uses A Free List

Given physical pages, the operating system maintains a free list (linked list)

The unused pages themselves contain the next pointer in the free list
Physical memory gets initialized at boot

To allocate a page, you remove it from the free list
To deallocate a page you add it back to the free list

19



Using the Page Tables for Every Memory Access is Slow

We need to follow pointers across multiple levels of page tables!

We’ll likely access the same page multiple times (close to the first access time)

A process may only need a few VPN → PPN mappings at a time

Our solution is another computer science classic: caching

20



A Translation Look-Aside Buffer (TLB) Caches Virtual Addresses

“Working flow of a TLB” by Aravind Krishna is licensed under CC BY-SA 4.0 21



Effective Access Time (EAT)

Assume a single page table (there’s only one additional memory access in the page
table)

TLB_Hit_Time = TLB_Search + Mem
TLB_Miss_Time = TLB_Search + 2 × Mem
EAT = α× TLB_Hit_Time + (1 − α)× TLB_Miss_Time

If α = 0.8, TLB_Search = 10 ns, and memory accesses take 100 ns, calculate EAT
EAT = 0.8 × 110 ns + 0.2 × 210 ns
EAT = 130 ns

22



Context Switches Require Handling the TLB

You can either flush the cache, or attach a process ID to the TLB

Most implementation just flush the TLB
RISC-V uses a sfence.vma instruction to flush the TLB

On x86 loading the base page table will also flush the TLB

23



How Many Levels Do I Need?

Assume we have a 32-bit virtual address with a page size of 4096 bytes
and a PTE size of 4 bytes

We want each page table to fit into a single page
Find the number of PTEs we could have in a page (210)

log2(#PTEs per Page) is the number of bits to index a page table

#Levels = ⌈Virtual Bits−Offset Bits
Index Bits ⌉

#Levels = ⌈32−12
10 ⌉ = 2

24



How Many Levels Do I Need?

Assume we have a 32-bit virtual address with a page size of 4096 bytes
and a PTE size of 4 bytes

We want each page table to fit into a single page
Find the number of PTEs we could have in a page (210)

log2(#PTEs per Page) is the number of bits to index a page table

#Levels = ⌈Virtual Bits−Offset Bits
Index Bits ⌉

#Levels = ⌈32−12
10 ⌉ = 2

24



TLB Testing

Check out lecture-08/test-tlb
(you may need to git submodule update --init --recursive)

./test-tlb <size> <stride>
Creates a <size> memory allocation and acccesses it every <stride> bytes

Results from my laptop:
> ./test-tlb 4096 4
1.93ns (~7.5 cycles)

> ./test-tlb 536870912 4096
155.51ns (~606.5 cycles)
> ./test-tlb 16777216 128
14.78ns (~57.6 cycles)

25



Use sbrk for Userspace Allocation

This call grows or shrinks your heap (the stack has a set limit)

For growing, it’ll grab pages from the free list to fulfill the request
The kernel sets PTE_V (valid) and other permissions

In memory allocators this is difficult to use, you’ll rarely shrink the heap
It’ll stay claimed by the process, and the kernel cannot free pages

Memory allocators use mmap to bring in large blocks of virtual memory

26



The Kernel Initializes the Processs’ Address Space (and Stack)

0

MAXVA

text

data

stack

heap

PAGESIZE

argument 0

argument N
0

address of argument N

address of argument 0
address of address of
 argument 0

0xFFFFFFF

(empty)

argc

...

...

nul-terminated string
argv[argc]

argv[0]

argv argument of main

argc argument of main
return PC for main

guard page

stack

trampoline
trapframe

© MIT https://github.com/mit-pdos/xv6-riscv-book/
27

https://github.com/mit-pdos/xv6-riscv-book/


A Trampoline is A Fixed Virtual Address Set by the Kernel

It allows the process to access kernel data without using a system call

The guard page will generate an exception if accessed meaning stack overflow

A trap is anytime special handler code runs:
• System call
• Exception
• Interrupt (e.g timer)

28



Page Faults Allow the Operating System to Handle Virtual Memory

Page faults are a type of exception for virtual memory access
Generated if it cannot find a translation, or permission check fails

This allows the operating system to handle it
We could lazily allocate pages, implement copy-on-write, or swap to disk

29



Page Tables Translate Virtual to Physical Addresses

The MMU is the hardware that uses page tables, which may:
• Be a single large table (wasteful, even for 32-bit machines)
• Be a multi-level to save space for sparse allocations
• Use the kernel allocate pages from a free list
• Use a TLB to speed up memory accesses

30


