CS 111: Operating System Principles
Lecture 9

Page Replacement

2.0.1

Jon Eyolfson
July 20, 2021

©@®O

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/

Computer Memory Hierarchy is a Trade-off of Capacity and Speed

CPU

Capacity CPU Cache Speed (and price)

Memory (RAM)

Non-Volatile Memory (NVMe)

SATA Solid State Disk (SSD)

Hard Disk Drive (HDD)

Tape Drives

We Want to Hide the Hierarchy from the User

Each level wants to pretend it has the speed of the layer above it
and the capacity of the layer below it

The memory used by all the processes my exceed the amount of physical memory
Not all of them may be in use at the same time

Only keep referenced pages in memory, put others on disk
Swap pages back to memory when they’re needed

Page Replacement Algorithms

Optimal
Replace the page that won’t be used for the longest

Random
Replace a random page

First-in First-out (FIFO)
Replace the oldest page first

Least Recently Used (LRU)
Replace the page that hasn’t been used in the longest time

Page Replacement Evaluation

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

We’ll use this for a bunch of examples during this lecture
We want the fewest number of page faults

For every example we’ll find the number of page faults

Optimal Example

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

0000000

Optimal Example

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

000000000

Optimal Example

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

JEL TN

N
w N = W

Optimal Example

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

|HBB0000000C

Optimal Example

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

IABRBO00000C

Optimal Example

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2
EEREERRERRRREER
20 12|]2| 2] |2
313/ (3]|3
a4l |a

Optimal Example

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5
1 1 1 1 1 1 1
2 2 2 2 2 2

3 3 3 3 3

4 4 4 5

Optimal Example

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 5 5

Optimal Example

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1 2
1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2

3 3 3 3 3 3 3

4 4 4 5 5 5

Optimal Example

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1 2 3
1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 5 5 5

Optimal Example

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1 2 3 4
1 1 1 1 1 1 1 1 1 1 4
2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3

4 4 4 5 5 5 5 5

Optimal Example

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1 2 3 4 5
1 1 1 1 1 1 1 1 1 1 4 4
2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3

4 4 4 5 5 5 5 5 5

Optimal Example

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

N
w N = W

4
1

AW N

—_ | =

AW N

\V]

AW N =

U W N

g w N

\V]

ua w Nh =

uau w N

g w NN b~

g w N~ O

6 page faults

FIFO Example

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

noooooooooe

FIFO Example

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

H000000000C

FIFO Example

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

HE00000000C

w N =W

FIFO Example

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

HBB0000000C

FIFO Example

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

|HBEBO00000C

FIFO Example

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2
EEEEEERREREEEEE
20122 |2]]2
3| 3|(3]|3
4| 4| |4

FIFO Example

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5
T[] [1]]5
20 2|2 |2] 2]]2
3/ 13| (3||3]]3
4| la| 4| |4

FIFO Example

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1
Tl 11 [1]]5]]5
20122l |2]|]2|]2] |1
3|13 |3||3][3]|]3
al |4l |a| |4l |4

FIFO Example

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1
Tl 11 [1]]5]]5
20 (22 2|]2||2]|]1]]1
3|13 [3||3][3|]|3]]2
al |4l |a| |4l |4

FIFO Example

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1
Tl 1] 1]]s]]|5]]s
20 (212l 2|22 [1|]1]]1
3|13 [3||3][3|]|3]]2
allal|a| |4 |4] |4

FIFO Example

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1
1l [t 1] 1]]5]|5]||5|]|5] |4
20 (2 22| 2|2 [1|][1]|1]]1
300333 |3]|3]|2]]2]]2
al |4l |a| 4| 4] |a]||3]]3

FIFO Example

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1 2 5
vl [t 1] 1]]5]|5]||5||5] 4] |4
20 (222 2|2 [1||1]|1]]1]]|5
3003 3] 3] |3]|3]|2]2]]2]]2
al|al|a||4a||4a]||a]||3]|3]]3

FIFO Example

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1 2 5
vl [t 1] 1]]5]|5]||5||5] 4] |4
20 (222 2|2 [1||1]|1]]1]]|5
3003 3] 3] |3]|3]|2]2]]2]]2
al|al|a||4a||4a]||a]||3]|3]]3

10 page faults

FIFO Example (3 Page Frames)

Assume our physical memory can only hold 3 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

10000000000

FIFO Example (3 Page Frames)

Assume our physical memory can only hold 3 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

JH000000000C

FIFO Example (3 Page Frames)

Assume our physical memory can only hold 3 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

JUUUUODOL

N
w N =W

FIFO Example (3 Page Frames)

Assume our physical memory can only hold 3 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

UUOUOLL

N
w N =W
w N b~

FIFO Example (3 Page Frames)

Assume our physical memory can only hold 3 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

JBEER000000C

FIFO Example (3 Page Frames)

Assume our physical memory can only hold 3 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2
1 1 1 4 4 4
2 2 2 1 1

3 3 3 2

FIFO Example (3 Page Frames)

Assume our physical memory can only hold 3 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2
1 1 1 4 4 4 5
2 2 2 1 1 1
3 3 3 2 2

FIFO Example (3 Page Frames)

Assume our physical memory can only hold 3 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

UL

(6)]

w NN
N

2
4
1
2

N
w N =W
(V)
N

FIFO Example (3 Page Frames)

Assume our physical memory can only hold 3 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 1 2
1 1 1 4 4 4 5 5 5
2 2 2 1 1 1 1 1

3 3 3 2 2 2 2

FIFO Example (3 Page Frames)

Assume our physical memory can only hold 3 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 1 2 3
1 1 1 4 4 4 5 5 5 5
2 2 2 1 1 1 1 1 3

3 3 3 2 2 2 2 2

FIFO Example (3 Page Frames)

Assume our physical memory can only hold 3 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 1 2 3 4
1 1 1 4 4 4 5 5 5 5 5
2 2 2 1 1 1 1 1 3 3

3 3 3 2 2 2 2 2 4

FIFO Example (3 Page Frames)

Assume our physical memory can only hold 3 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 1 2 3 4 5
1 1 1 4 4 4 5 5 5 5 5 5
2 2 2 1 1 1 1 1 3 3 3

3 3 3 2 2 2 2 2 4 4

FIFO Example (3 Page Frames)

Assume our physical memory can only hold 3 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

w NN
N

2
4 5 5
1
2

N
w N = W
N = 01N
N W oW
A W O |b
A W 01U

9 page faults

Bélady’s Anomaly Says More Page Frames Causes More Faults

This is a problem with FIFO algorithms
Does not exist with LRU or “stack-based algorithms”

Paper in 2010 found that this FIFO anomaly is unbounded
(https://arxiv.org/abs/1003.1336)
You could construct a sequence to get any arbitrary page fault ratio

For other algorithms:
increasing the number of page frames decreases the number of page faults

https://arxiv.org/abs/1003.1336

LRU Example (Use FIFO to Break Ties)

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

n00oooooooe

LRU Example (Use FIFO to Break Ties)

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

H000000000C

LRU Example (Use FIFO to Break Ties)

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

JBULUOLOOLL

—_
—_
—_

w

LRU Example (Use FIFO to Break Ties)

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

TR

—_
—_
—_
—_

w
A oW N

LRU Example (Use FIFO to Break Ties)

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

[N

1 2 3 4

—_
—_
—_
—_
—_ -

A oW N
A W N

LRU Example (Use FIFO to Break Ties)

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2
1 1 1 1 1 1
2 2 2 2

3 3 3

4 4 4

LRU Example (Use FIFO to Break Ties)

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5
1 1 1 1 1 1 1
2 2 2 2 2

3 3 3 5

4 4 4 4

LRU Example (Use FIFO to Break Ties)

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1
1 1 1 1 1 1 1 1
2 2 2 2 2 2

3 3 3 5 5

4 4 4 4 4

LRU Example (Use FIFO to Break Ties)

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

1 2 3 4
1 1 1 1

- |IN
— |
- N

A oW N
A W N
A 0w N
A 0N
A 00N
EANE S) BN V]

LRU Example (Use FIFO to Break Ties)

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1 2 3
NEREEEEEE AR REEE AR
2 2| (2] (2| |2||2]|]2]]2

3| (3] [3||5||5]||5]]5

alla||a| 4|4 |43

LRU Example (Use FIFO to Break Ties)

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1 2 3 4
AEREEREEE RN EE AR
2 2| (2] (2| 2| |2]||2] 2]]2

3| (3] [3||5||5||5]||5] |4

allal 4] 4] |4a||a]|]|3]|]|3

LRU Example (Use FIFO to Break Ties)

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1 2 3 4 5
Tl (oot 1]]5
2 2| (2] 2| 2| |2]||2] 2] 2|2

3| (3] [3||5||5||5]||5] 4|4

40 14| |4| 4| 4| |4||3]]3]]3

LRU Example (Use FIFO to Break Ties)

Assume our physical memory can only hold 4 pages, and we access the following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1 2 3 4 5
Tl (oot 1]]5
2 2| (2] 2| 2| |2]||2] 2] 2|2

3| (3] [3||5||5||5]||5] 4|4

40 14| |4| 4| 4| |4||3]]3]]3

8 page faults

Implementing LRU in Hardware Has to Search All Pages

You could implement it by keeping a counter for each page
For each page reference, save the system clock into the counter

For replacement, scan through the pages and find the one with the oldest clock

Implementing LRU in Software is Too Expensive

Create a doubly linked list of pages
For each page reference, move it to the front of the list
For replacement, remove from the back of the list

It requires 6 pointer updates for each page reference, and
also creates a high contention bottleneck for multiple processors

Implementing LRU in Practice Isn’t Going to Work

We settle for approximate LRU
LRU is an approximation of the optimal case anyways

There’s lots of different tweaks you can do to implement it more efficiently

We’ll be looking at the clock algorithm, but there’s also:
Least Frequently Used (LFU), 2Q, Adaptive Replacement Cache (ARC)

Clock Algorithm

Data structures:
® Keeps a circular list of pages in memory
® Uses a reference bit for each page in memory (light grey in next slides)

® Has a “hand” (iterator) pointing to the last element examined

Algorithm, to insert a new page:
® Check the hand’s reference bit, if it’s O then place the page and advance hand

® |f the reference bitis 1, set it to 0, advance the hand, and repeat

For page accesses, set the reference bit to 1

Clock Example (with Diagram)

Assume our physical memory can only hold 4 pages, and we access the following:
123452312 3 (all of the pages are initially on disk)

I

NI

Clock Example (with Diagram)

Assume our physical memory can only hold 4 pages, and we access the following:
123452312 3 (all of the pages are initially on disk)

/N

0 0

0 0

\0 /
0

Clock Example (with Diagram)

Assume our physical memory can only hold 4 pages, and we access the following:
123452312 3 (all of the pages are initially on disk)

I
L/

Clock Example (with Diagram)

Assume our physical memory can only hold 4 pages, and we access the following:
123452312 3 (all of the pages are initially on disk)

S
NN

Clock Example (with Diagram)

Assume our physical memory can only hold 4 pages, and we access the following:
123452312 3 (all of the pages are initially on disk)

1 2 3 4

—_

CT)
\

Clock Example (with Diagram)

Assume our physical memory can only hold 4 pages, and we access the following:
123452312 3 (all of the pages are initially on disk)

/N
NNE

Clock Example (with Diagram)

Assume our physical memory can only hold 4 pages, and we access the following:
123452312 3 (all of the pages are initially on disk)

/I
&/

Clock Example (with Diagram)

Assume our physical memory can only hold 4 pages, and we access the following:
123452312 3 (all of the pages are initially on disk)

/N
NN

Clock Example (with Diagram)

Assume our physical memory can only hold 4 pages, and we access the following:
123452312 3 (all of the pages are initially on disk)

CT)
g/

Clock Example (with Diagram)

Assume our physical memory can only hold 4 pages, and we access the following:
123452312 3 (all of the pages are initially on disk)

1 2 3 4 5

5
/ 1 \
4 2
0 0

NI

Clock Example (with Diagram)

Assume our physical memory can only hold 4 pages, and we access the following:
123452312 3 (all of the pages are initially on disk)

1 2 3 4 5 2

5
/ 1 \
4 2
0 1

NI

Clock Example (with Diagram)

Assume our physical memory can only hold 4 pages, and we access the following:
123452312 3 (all of the pages are initially on disk)

1 2 3 4 5 2 3

Clock Example (with Diagram)

Assume our physical memory can only hold 4 pages, and we access the following:
123452312 3 (all of the pages are initially on disk)

1 2 3 4 5 2 3 1

Clock Example (with Diagram)

Assume our physical memory can only hold 4 pages, and we access the following:
123452312 3 (all of the pages are initially on disk)

1 2 3 4 5 2 3 1

5
/ 1 \
4 2
0 0

Clock Example (with Diagram)

Assume our physical memory can only hold 4 pages, and we access the following:
123452312 3 (all of the pages are initially on disk)

1 2 3 4 5 2 3 1

p
N

8

Clock Example (with Diagram)

Assume our physical memory can only hold 4 pages, and we access the following:
123452312 3 (all of the pages are initially on disk)

1 2 3 4 5 2 3 1 2

p
N

8

Clock Example (with Diagram)

Assume our physical memory can only hold 4 pages, and we access the following:
123452312 3 (all of the pages are initially on disk)

1 2 3 4 5 2 3 1 2 3

CT
4

Clock Example

Assume our physical memory can only hold 4 pages, and we access the following:
123452312 3 (all of the pages are initially on disk)

nnooooone

Clock Example

Assume our physical memory can only hold 4 pages, and we access the following:
123452312 3 (all of the pages are initially on disk)

0000000

Clock Example

Assume our physical memory can only hold 4 pages, and we access the following:
123452312 3 (all of the pages are initially on disk)

[T

N =
w N =

Clock Example

Assume our physical memory can only hold 4 pages, and we access the following:
123452312 3 (all of the pages are initially on disk)

0L

—_
—_
—_

A W N

Clock Example

Assume our physical memory can only hold 4 pages, and we access the following:
123452312 3 (all of the pages are initially on disk)

L

1 2 3 4
1 1 1 1

A W N
A W N OO,

Clock Example

Assume our physical memory can only hold 4 pages, and we access the following:
123452312 3 (all of the pages are initially on disk)

UL

1 2 3 4
1 1 1 1

A W N
A W N OO,
A W N ON

Clock Example
Assume our physical memory can only hold 4 pages, and we access the following:
123452312 3 (all of the pages are initially on disk)

1 2 3 4
1 1 1 1

A W N

A W N OO,
A W N ON
A WO DN O W

Clock Example
Assume our physical memory can only hold 4 pages, and we access the following:
123452312 3 (all of the pages are initially on disk)

1 2 3 4
1 1 1 1

A W N

A W N OO,
A W N ON
A WO DN O W
- W N o=

Clock Example
Assume our physical memory can only hold 4 pages, and we access the following:
123452312 3 (all of the pages are initially on disk)

1 2 3 4
1 1 1 1

—_

A W N

A W N OO,

A W N ON

A WO DN O W
w N U
w N oD

Clock Example
Assume our physical memory can only hold 4 pages, and we access the following:
123452312 3 (all of the pages are initially on disk)

1 2 3 4
1 1 1 1

A W N

A W N OO,

A W N ON

A WO DN O W
w N o=
w N oD
w N O W

Clock Example
Assume our physical memory can only hold 4 pages, and we access the following:
123452312 3 (all of the pages are initially on disk)

1 2 3 4
1 1 1 1

A W N

A W N OO,

A W N ON

A WO DN O W
w N o=
w N oD
w N O W

6 page faults

For Performance You May Choose to Disable Swapping

Memory is cheap, and has quite high capacity
You’d rather know you need more memory than run slowly
Linux runs an OOM (out of memory) killer, that SIGKILLs the memory hog

Larger page sizes allow for speedup
Trade more fragmentation for more TLB coverage

Page Replacement Algorithms Aim to Reduce Page Faults

We saw the following:
® Optimal (good for comparison but not realistic)
® Random (actually works surprisingly well, avoids the worst case)
® FIFO (easy to implement but Bélady’s anomaly)
® | RU (gets close to optimal but expensive to implement)

® Clock (a decent approximation of LRU)

