
Pointer Arithmetic

2024 Winter APS 105 Computer Fundamentals
Jon Eyolfson

Lecture 14
1.0.0

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/

Let’sMove sum to a Function
#include <stdio.h>

#define ARRAY_LENGTH(arr) (sizeof(arr) / sizeof((arr)[0]))

int sum(int array[]) {
int arrayLength = ARRAY_LENGTH(array);
int accumulator = 0;
for (int i = 0; i < arrayLength; ++i) { accumulator += array[i]; }
return accumulator;

}

int main(void) {
int grades[] = {75, 83, 99, 64, 72};
int gradesLength = ARRAY_LENGTH(grades);
int average = sum(grades) / gradesLength;
printf("Average: %d\n", average);
return 0;

}
1

The Program Looks the Same, But theOutput isWrong

Previous, we saw: Average: 78
Now, Average: 31

What happened?

2

It SeemsWeOnly Use the First Two Elements in sum
Let’s just check what the size of the array is...

int sum(int array[]) {
printf("sizeof(array): %d\n", (int) sizeof(array));
int arrayLength = ARRAY_LENGTH(array);
int accumulator = 0;
for (int i = 0; i < arrayLength; ++i) {

accumulator += array[i];
}
return accumulator;

}

If we run this we see: sizeof(array): 8

We need to see how C stores arrays in memory to explain this...

3

It SeemsWeOnly Use the First Two Elements in sum
Let’s just check what the size of the array is...

int sum(int array[]) {
printf("sizeof(array): %d\n", (int) sizeof(array));
int arrayLength = ARRAY_LENGTH(array);
int accumulator = 0;
for (int i = 0; i < arrayLength; ++i) {

accumulator += array[i];
}
return accumulator;

}

If we run this we see: sizeof(array): 8

We need to see how C stores arrays in memory to explain this...

3

CPicks a RandomAddress, a, to Start theArray
The elements of the array are beside each other in memory
(the size of the element depends on the type, this slide assumes int)

75 83 99 64 72
Index 0 1 2 3 4

Address a+0x00 a+0x04 a+0x08 a+0x0c a+0x10
To keep track of the array, C just uses a pointer to the start of the array!

4

ArraysCannot Be Passed byValue

C will not create a copy of the entire array
Instead, C copies the address to the start of the array

A type like int [] gets replaced by int *
You may find this referred to as array decay

So, sizeof(array): 8 (in the sum function) because array is a pointer
On 64-bit machines pointers, which are just addresses, are 8 bytes
(any type that ends with a * is an address, and assume its 8 bytes)

5

ArraysCannot Be Passed byValue

C will not create a copy of the entire array
Instead, C copies the address to the start of the array

A type like int [] gets replaced by int *
You may find this referred to as array decay

So, sizeof(array): 8 (in the sum function) because array is a pointer
On 64-bit machines pointers, which are just addresses, are 8 bytes
(any type that ends with a * is an address, and assume its 8 bytes)

5

IfWeKnow a,WeCanCompute theAddress of Any Element

Again, assume we have our array of int:

75 83 99 64 72
Index 0 1 2 3 4

Address a+0x00 a+0x04 a+0x08 a+0x0c a+0x10
Given a, the starting address of the array, and the index, i,
it seems like the address of an element should be: a + i * sizeof(int)

However, C automatically uses sizeof on the type pointed to for computing
pointer arithmetic, so a + i in C results in the address above

6

WeCanOnlyPerformAddition andSubtractionwithPointers

Assume we have:
int *a;
double *b;
char **c;

When C computes addresses:
a + i results in the address a + i * 4
b + i results in the address b + i * 8
c + i results in the address b + i * 8
*c + i results in the address *c + i * 1

7

CGuarantees theOrder of Elements inMemory

75 83 99 64 72
Index 0 1 2 3 4

Address a+0x00 a+0x04 a+0x08 a+0x0c a+0x10
We say array elements are contiguous (they are all together in memory)
There is also no wasted space, we use addresses [a+0x00, a+0x14)
Note: in a range [means inclusive and) means exclusive
In order words, addresses a + 0, a + 1, ..., a + 19 20 bytes)

8

Using Pointer ArithmeticWeCanAccessAny Element

Assume we have our int array called grades:

75 83 99 64 72
Index 0 1 2 3 4

Address a+0x00 a+0x04 a+0x08 a+0x0c a+0x10
grades + 1 is a pointer to the second element (83)
We can dereference the pointer, *(grades + 1), to access the value 83

The syntax to access an array element is just for your convenience
grades[index] is the same as *(grades + index)
You should always prefer the array syntax

9

Using Pointer ArithmeticWeCanAccessAny Element

Assume we have our int array called grades:

75 83 99 64 72
Index 0 1 2 3 4

Address a+0x00 a+0x04 a+0x08 a+0x0c a+0x10
grades + 1 is a pointer to the second element (83)
We can dereference the pointer, *(grades + 1), to access the value 83

The syntax to access an array element is just for your convenience
grades[index] is the same as *(grades + index)
You should always prefer the array syntax

9

sizeof anArray is OnlyValid in Scope of Its Declaration
Otherwise, there’s pointer decay, and it just becomes another pointer
Therefore, we need to tell the sum function the length of the array

int sum(int array[], int arrayLength) {
int accumulator = 0;
for (int i = 0; i < arrayLength; ++i) {

accumulator += array[i];
}
return accumulator;

}

10

There are RulesWhereVariablesAre inMemory

Addresses for variables in functions (called local variables)
start at a randomly picked address, sp (short for stack pointer)

Variables will be put, in order, at lower addresses from the initial sp
Sometimes there will be space between variables, sometimes not

These details are not needed for this course,
and the rules may vary been CPUs and OSs

11

YouShouldNot Actually Do Pointer Arithmetic!

#include <stdio.h>
#include <stdlib.h>

int main(void) {
int x = 1;
int y = 2;
int z = 3;
int *p = &z;
*(p + 2) = 4;
printf("x: %d, y: %d, z: %d\n", x, y, z);
return EXIT_SUCCESS;

} Memory
main

x: 1x: 40x1ffc

y: 20x1ff8

z: 30x1ff4

p: address0x1fe8

12

YouShouldNot Actually Do Pointer Arithmetic!

#include <stdio.h>
#include <stdlib.h>

int main(void) {
int x = 1;
int y = 2;
int z = 3;
int *p = &z;
*(p + 2) = 4;
printf("x: %d, y: %d, z: %d\n", x, y, z);
return EXIT_SUCCESS;

} Memory
main

x: 1x: 40x1ffc

y: 20x1ff8

z: 30x1ff4

p: address0x1fe8

12

YouShouldNot Actually Do Pointer Arithmetic!

#include <stdio.h>
#include <stdlib.h>

int main(void) {
int x = 1;
int y = 2;
int z = 3;
int *p = &z;
*(p + 2) = 4;
printf("x: %d, y: %d, z: %d\n", x, y, z);
return EXIT_SUCCESS;

} Memory
main

x: 1x: 40x1ffc

y: 20x1ff8

z: 30x1ff4

p: address0x1fe8

12

YouShouldNot Actually Do Pointer Arithmetic!

#include <stdio.h>
#include <stdlib.h>

int main(void) {
int x = 1;
int y = 2;
int z = 3;
int *p = &z;
*(p + 2) = 4;
printf("x: %d, y: %d, z: %d\n", x, y, z);
return EXIT_SUCCESS;

} Memory
main

x: 1x: 40x1ffc

y: 20x1ff8

z: 30x1ff4

p: address0x1fe8

12

YouShouldNot Actually Do Pointer Arithmetic!

#include <stdio.h>
#include <stdlib.h>

int main(void) {
int x = 1;
int y = 2;
int z = 3;
int *p = &z;
*(p + 2) = 4;
printf("x: %d, y: %d, z: %d\n", x, y, z);
return EXIT_SUCCESS;

} Memory
main

x: 1x: 40x1ffc

y: 20x1ff8

z: 30x1ff4

p: address0x1fe8

12

YouShouldNot Actually Do Pointer Arithmetic!

#include <stdio.h>
#include <stdlib.h>

int main(void) {
int x = 1;
int y = 2;
int z = 3;
int *p = &z;
*(p + 2) = 4;
printf("x: %d, y: %d, z: %d\n", x, y, z);
return EXIT_SUCCESS;

} Memory
main

x: 1x: 40x1ffc

y: 20x1ff8

z: 30x1ff4

p: address0x1fe8

12

TheData Structure That StoresValues is Called a Stack

Notice in all our examples with memory in functions,
we add new variables to the top,
and we remove variables from the top

The real life analogy is a spring-loaded stack of plates
The last plate in, is the first plate out

Again, you do not have to know these rules!
You may notice there’s some unused addresses between z and p

13

TheData Structure That StoresValues is Called a Stack

Notice in all our examples with memory in functions,
we add new variables to the top,
and we remove variables from the top

The real life analogy is a spring-loaded stack of plates
The last plate in, is the first plate out

Again, you do not have to know these rules!
You may notice there’s some unused addresses between z and p

13

WhyDon’t Just Use Pointers Instead in Functions?

Instead of:
int sum(int array[], int arrayLength);

Why not:
int sum(int *array, int arrayLength);

They do mean the same thing to the compiler, but as humans:
int array[] is a pointer to multiple contiguous values
int *array is a pointer to a single value

14

WhyDon’t Just Use Pointers Instead in Functions?

Instead of:
int sum(int array[], int arrayLength);

Why not:
int sum(int *array, int arrayLength);

They do mean the same thing to the compiler, but as humans:
int array[] is a pointer to multiple contiguous values
int *array is a pointer to a single value

14

Beware: Variable Declarations are Strangewith Pointers

Assume we make the following declaration:
int *x, y;

C does not carry any * across the commas in declarations, so:
The type of x is int *
The type of y is int

Instead of remembering this rule, always declare one variable at a time

15

Beware: Variable Declarations are Strangewith Pointers

Assume we make the following declaration:
int *x, y;

C does not carry any * across the commas in declarations, so:
The type of x is int *
The type of y is int

Instead of remembering this rule, always declare one variable at a time

15

IfWeCan’t Set A Pointer Immediately,
Initialize it to a “Safe”Address

If we don’t know the value of an int, x then,
we should declare it as int x = 0;

Otherwise, we may get a “random” value

In this course, you should likely only set pointers to a value from &
If you don’t know the value, you should declare it as int *p = NULL;

16

IfWeCan’t Set A Pointer Immediately,
Initialize it to a “Safe”Address

If we don’t know the value of an int, x then,
we should declare it as int x = 0;

Otherwise, we may get a “random” value

In this course, you should likely only set pointers to a value from &
If you don’t know the value, you should declare it as int *p = NULL;

16

Dereferencing NULLAlwaysGenerates an Error
It’s a special address (it’s actually address 0) that’s always invalid
#include <stdio.h>
#include <stdlib.h>

int main(void) {
int *p = NULL;
*p = 1;
return EXIT_SUCCESS;

}

When we run this we’ll see: segmentation fault (with a bunch of numbers)
Our program immediately crashes and stops

17

Segmentation Faults are a GoodThing

They’re easier to debug, because you know how far your program gets

It’s much much much harder to debug if a random value changes

There’s a tool called Valgrind that may help (you’re not required to use it)
If you run your program on the command line,
you can write valgrind before your executable

18

Local VariablesOnly ExistWhile the Function Runs

#include <stdio.h>
#include <stdlib.h>

int *foo(void) {
int x = 1;
return &x;

}

int main(void) {
int *p = foo();
printf("*p: %d\n", *p);
return EXIT_SUCCESS;

} Memory
main
foo

p: ?p: address
x: 1

19

Local VariablesOnly ExistWhile the Function Runs

#include <stdio.h>
#include <stdlib.h>

int *foo(void) {
int x = 1;
return &x;

}

int main(void) {
int *p = foo();
printf("*p: %d\n", *p);
return EXIT_SUCCESS;

} Memory
main
foo

p: ?p: address
x: 1

19

Local VariablesOnly ExistWhile the Function Runs

#include <stdio.h>
#include <stdlib.h>

int *foo(void) {
int x = 1;
return &x;

}

int main(void) {
int *p = foo();
printf("*p: %d\n", *p);
return EXIT_SUCCESS;

} Memory
main
foo

p: ?p: address
x: 1

19

Local VariablesOnly ExistWhile the Function Runs

#include <stdio.h>
#include <stdlib.h>

int *foo(void) {
int x = 1;
return &x;

}

int main(void) {
int *p = foo();
printf("*p: %d\n", *p);
return EXIT_SUCCESS;

} Memory
main
foo

p: ?p: address
x: 1

19

WeCanReturn Pointers That are Still Valid
#include <stdio.h>

int* maxPointer(int *a, int *b) {
if (*a >= *b) {

return a;
}
else {

return b;
}

}

int main(void) {
int x = 1;
int y = 2;
int *p = maxPointer(&x, &y);
printf("max: %d\n", *p);
return 0;

} Memory
main

x: 1
y: 2
p: ?p: address

maxPointer
b: address
a: address

20

WeCanReturn Pointers That are Still Valid
#include <stdio.h>

int* maxPointer(int *a, int *b) {
if (*a >= *b) {

return a;
}
else {

return b;
}

}

int main(void) {
int x = 1;
int y = 2;
int *p = maxPointer(&x, &y);
printf("max: %d\n", *p);
return 0;

} Memory
main

x: 1
y: 2
p: ?p: address

maxPointer
b: address
a: address

20

WeCanReturn Pointers That are Still Valid
#include <stdio.h>

int* maxPointer(int *a, int *b) {
if (*a >= *b) {

return a;
}
else {

return b;
}

}

int main(void) {
int x = 1;
int y = 2;
int *p = maxPointer(&x, &y);
printf("max: %d\n", *p);
return 0;

} Memory
main

x: 1
y: 2
p: ?p: address

maxPointer
b: address
a: address

20

WeCanReturn Pointers That are Still Valid
#include <stdio.h>

int* maxPointer(int *a, int *b) {
if (*a >= *b) {

return a;
}
else {

return b;
}

}

int main(void) {
int x = 1;
int y = 2;
int *p = maxPointer(&x, &y);
printf("max: %d\n", *p);
return 0;

} Memory
main

x: 1
y: 2
p: ?p: address

maxPointer
b: address
a: address

20

WeCanReturn Pointers That are Still Valid
#include <stdio.h>

int* maxPointer(int *a, int *b) {
if (*a >= *b) {

return a;
}
else {

return b;
}

}

int main(void) {
int x = 1;
int y = 2;
int *p = maxPointer(&x, &y);
printf("max: %d\n", *p);
return 0;

} Memory
main

x: 1
y: 2
p: ?p: address

maxPointer
b: address
a: address

20

WeCanReturn Pointers That are Still Valid
#include <stdio.h>

int* maxPointer(int *a, int *b) {
if (*a >= *b) {

return a;
}
else {

return b;
}

}

int main(void) {
int x = 1;
int y = 2;
int *p = maxPointer(&x, &y);
printf("max: %d\n", *p);
return 0;

} Memory
main

x: 1
y: 2
p: ?p: address

maxPointer
b: address
a: address

20

BeVeryCareful with Pointers

Only use them when necessary
Usually only when a function needs to “return” multiple values

You should try to write functions that only need to return one value

Variables only exist in memory at run-time while the function call is running

21

