
Structures

2024 Winter APS 105 Computer Fundamentals
Jon Eyolfson

Lecture 28
1.0.0

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/

YouCanGroupVariablesWithin a Structure

You can create your own type with struct, its syntax is:
struct <name> {
<variable declarations>

};
Where you replace:

<name> with the name you’d like to give the group of variables
<variable declarations> with as many variable declarations as you wish

You should define a struct just below the includes, and not within a function

1

Let’s Calculate the Distance BetweenTwoPoints

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

double distance(double x1, double y1, double x2, double y2) {
return sqrt(pow(x2 - x1, 2.0) + pow(y2 - y1, 2.0));

}

int main(void) {
double x1 = 1.0;
double y1 = 2.0;
double x2 = 4.0;
double y2 = 6.0;
double d = distance(x1, y1, x2, y2);
printf("%.1lf\n", d);
return EXIT_SUCCESS;

}
2

It’s Not Too Bad to RememberWhichVariable isWhich

However, we may write more functions, like:
void print(double x, double y) {

printf("point(%.1lf, %.1lf)\n", x, y);
}

Now it’s a bit awkward to use, and may lead to errors
We may accidentally write:

print(x1, y2);

Which would not be one of the two points we intended

3

WeCanMake a Structure That Represents a Point

struct point {
double x;
double y;

};

This creates a new type called: struct point
We can create a variable using it with: struct point p1;
We can access the inner variables (usually called fields or members) with .
For example, we can use p1.x or p1.y in this case

4

YouCan RenameTypeswith typedef
The syntax of a typedef, is:

typedef <type> <new_name>;
Where you replace:

<new_name> by the name of whatever you’d like to name your type
<type> by the type you would like to use when you use <new_name>

5

WeCanUse typedef Is to SaveUs fromWriting struct
You’re able to create a struct without giving it a name, you may write:

typedef struct {
double x;
double y;

} point_t;

Afterwards, you can create a variable with:
point_t p1;

However, you usually still give the struct a name:
typedef struct point {

double x;
double y;

} point_t;

6

WeCould CreateOur TwoPoints and Initialize the Fields

point_t p1;
p1.x = 1.0;
p1.y = 2.0;
point_t p2;
p2.x = 4.0;
p2.y = 6.0;

7

WeCan Initialize Structures LikeArrays

We can write:
point_t p1 = {1.0, 2.0};
point_t p2 = {4.0, 6.0};

C sets the values in order within the structure

You may use the field names to set the values in a different order:
point_t p1 = {
.y = 2.0,
.x = 1.0,

};

8

WeCanRe-write the Functions to Use Point Structures

typedef struct point {
double x;
double y;

} point_t;

double distance(point_t p1 , point_t p2) {
return sqrt(pow(p2.x - p1.x, 2.0) + pow(p2.y - p1.y, 2.0));

}
void print(point_t p) {

printf("point(%lf, %lf)\n", p.x, p.y);
}

int main(void) {
point_t p1 = {1.0, 2.0};
point_t p2 = {4.0, 6.0};
double d = distance(p1, p2);
printf("%.1lf\n", d);
return EXIT_SUCCESS;

} 9

Remember, FunctionArguments in C are Copy-by-value

Sometimes structures can be very large, and copying them is slow
(also just like variables, we cannot modify the values in the caller)

Normally programmers always use structure arguments as pointers
double distance(point_t *p1 , point_t *p2);

10

There’s anOperator toAccess Fields Through a Pointer

Assuming we have: point_t *p1
We can access the x field using: (*p1).x
We have to dereference the pointer to get a point_t, then we can access x

The -> operator combines dereferencing and the field access, we can use:
p1->x

11

Let’s ChangeOur Functions to Use Pointers

double distance(point_t *p1 , point_t *p2) {
return sqrt(pow(p2->x - p1->x, 2.0) + pow(p2->y - p1->y, 2.0));

}

void print(point_t *p) {
printf("point(%lf, %lf)\n", p->x, p->y);

}

int main(void) {
point_t p1 = {1.0, 2.0};
point_t p2 = {4.0, 6.0};
double d = distance(&p1, &p2);
printf("%.1lf\n", d);
return EXIT_SUCCESS;

}

12

YouCannot Access a Field Using . with a Pointer
You’ll get a compiler error like the following:

error: member reference type 'point_t *' is a pointer; did you mean to use '->'?

Luckily, this is easy to fix, and may be a common message you see

13

WeCanCreate a Structure Dynamically

Usually, we create our own dedicated function for this:

point_t *point_create(double x, double y) {
point_t *point = malloc(sizeof(point_t));
point->x = x;
point->y = y;
return point;

}

This function lets us create a point dynamically, and initialize it in one step:
point_t *p1 = point_create(1.0, 2.0);

As always, we need to remember to free p1 after we’re done with it

14

Usually,WeAlways Prefix All Functions that Use a Structure

In the case of our point, all our functions should start with: point_
We should define our other functions like:

double point_distance(point_t *p1 , point_t *p2) {
return sqrt(pow(p2->x - p1->x, 2.0) + pow(p2->y - p1->y, 2.0));

}

void point_print(point_t *point) {
printf("point(%.1lf, %.1lf)\n", point->x, point->y);

}

15

The following is more advanced usage of C programming
you may not be able to use them for this course

16

Usually, YouDivide Code BetweenDifferent Files

So, I may create a file called point.c that contains the defintion of:
point_create, point_distance, and point_print

point.c could also be the only file that defines the struct itself (more later)

We then create a file called point.h that contains the function prototypes
That way we can use these functions in other .c files

Recall, we call a .h file a header file

17

AnExample Header File for Our Point

#ifndef POINT_H
#define POINT_H

typedef struct point point_t;

point_t *point_create(double x, double y);
double point_distance(point_t *p1 , point_t *p2);
void point_print(point_t *point);

#endif

18

This Header File is IncludedOnce andHides the struct
The lines that start with a # are preprocessor commands
They make sure that we only read this file once when we compile a file

We can also do a forward declaration of the struct
We tell the compiler we’re going to define this later

We can create pointers to the struct without knowing its fields

19

NowWeCan Just Use theHeader File in Our Program

#include <stdio.h>
#include <stdlib.h>

#include "point.h"

int main(void) {
point_t *p1 = point_create(1.0, 2.0);
point_print(p1);
point_t *p2 = point_create(4.0, 6.0);
point_print(p2);
printf("distance(p1, p2) = %.1lf\n", point_distance(p1, p2));
free(p1);
free(p2);
return EXIT_SUCCESS;

}

20

Our ProgramCannot Access Fields Itself

It doesn’t know the definition of the struct
It’s more flexible if we can hide the details

We should create more functions to access and set the fields
Typically, you create a getter to get the current value,
and a setter to modify the value

21

Our Complete Header File

#ifndef POINT_H
#define POINT_H

typedef struct point point_t;

point_t *point_create(double x, double y);
double point_distance(point_t *p1 , point_t *p2);
double point_getX(point_t *p);
void point_setX(point_t *p, double x);
double point_getY(point_t *p);
void point_setY(point_t *p, double y);
void point_print(point_t *point);

#endif

22

Our Complete Header File

It doesn’t know the definition of the struct
It’s more flexible if we can hide the details

23

The Start of Our point.cCode
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

#include "point.h"

typedef struct point {
double x;
double y;

} point_t;

point_t *point_create(double x, double y) {
point_t *point = malloc(sizeof(point_t));
point->x = x;
point->y = y;
return point;

}
24

The Rest of Our point.cCode
double point_distance(point_t *p1 , point_t *p2) {

return sqrt(pow(p2->x - p1->x, 2.0) + pow(p2->y - p1->y, 2.0));
}

double point_getX(point_t *p) { return p->x; }
void point_setX(point_t *p, double x) { p->x = x; }

double point_getY(point_t *p) { return p->y; }
void point_setY(point_t *p, double y) { p->y = y; }

void point_print(point_t *point) {
printf("point(%.1lf, %.1lf)\n", point->x, point->y);

}

25

WeWhenCompile,WeNeed to Use Both Files

We could put our main function in a file named main.c
We need to compile both files at the same time with:

gcc point.c main.c -o main -lm
Afterwards, we can run main as before

26

