More Sorting

2024 Winter APS 105: Computer Fundamentals Lecture 33
Jon Eyolfson 1.8.0

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/

We'll Touch on One More Sorting Algorithm

Quicksort is a O(nlogn) sorting algorithm

We select an element as a “pivot”, and place elements less than the pivot
to the left, and greater than to the pivot the right (called partitioning)

After this, we recursively sort both sides

Partitioning an Array Using the Last Element (9) as a Pivot

10 14 8 13 20 3 6 9
(6] (1] (2] (3] [4] (5] (6] (7]

Partitioning an Array Using the Last Element (9) as a Pivot

10 14 8 13 20 3 6 9
[e] (1] (2] (3] [4] (5] (6] (7]

Partitioning an Array Using the Last Element (9) as a Pivot

10 14 8 13 20 3 6 9
(6] (1] (2] (3] [4] (5] (6] (7]

Partitioning an Array Using the Last Element (9) as a Pivot

10 14 8 13 20 3 6 9
(6] (1] (2] (3] [4] (5] (6] (7]

Partitioning an Array Using the Last Element (9) as a Pivot

(e] (1] (2] (3] [4] (5] (6] (7]

Partitioning an Array Using the Last Element (9) as a Pivot

(e] (1] (2] (3] [4] (5] (6] (7]

Partitioning an Array Using the Last Element (9) as a Pivot

(e] (1] (2] (3] [4] (5] (6] (7]

Partitioning an Array Using the Last Element (9) as a Pivot

(e] (1] (2] (3] [4] (5] (6] (7]

Partitioning an Array Using the Last Element (9) as a Pivot

(e] (1] (2] (3] [4] (5] (6] (7]

Partitioning an Array Using the Last Element (9) as a Pivot

(e] (1] (2] (3] [4] (5] (6] (7]

Partitioning an Array Using the Last Element (9) as a Pivot

(e] (1] (2] (3] [4] (5] (6] (7]

Partitioning an Array Using the Last Element (9) as a Pivot

(e] (1] (2] (3] [4] (5] (6] (7]

Quicksort Recursively Sorts Both Sides of the Partition

void (int array[], int low, int high) {
if (low >= high) {
return;
3

int pivot = partition(array, low, high);

quickSortHelper(array, low, pivot - 1);

quickSortHelper(array, pivot + 1, high);
}

void (int array[], int arraylLength) {
quickSortHelper(array, 8, arraylLength - 1);
}

Partition Code as Seen from a Search

int

(int array[], int low, int high) {
int pivot = array[high];
int i = low - 1;
for(int j = low; j <= high; j++) {
if(array[j] < pivot) {

++7:

swap(&array[i], &array[j]);
}

++i;
swap(&array[i], &array[high]);
return i;

Partition Code Re-written for Clarity

int

(int array[], int low, int high) {
int pivot = array[high];
int i = low;
for(int j = low; j < high; j++) {
if(array[j] < pivot) {
if (11=7){
swap(&array[i], &array[j]);

++];

}

swap(&array[i], &array[high]);
return i;

There’s Also Joke Sorting Algorithms

There's a sorting algorithm called bogosort, which “work” but NEVER use

If you want to use bogosort to sort a deck of cards:
Throw them in the air, pick them up randomly, if they're not sorted repeat

There’s Also Joke Sorting Algorithms

There's a sorting algorithm called bogosort, which “work” but NEVER use
If you want to use bogosort to sort a deck of cards:
Throw them in the air, pick them up randomly, if they're not sorted repeat

We can do even worse, called bozosort:
randomly switch two cards and see if it's sorted yet, if not repeat

This is a Sorting to NEVER Use

bool (int array[], int arraylLength) {
for (int i = 1; i < arraylength; ++i) {
if (array[i - 1] > array[i]) {
return false;
}

}
return true;
}
void (int array[], int arraylLength) {
while (!inOrder(array, arraylLength)) {
int i = rand() % arraylength;
int j = rand() % (arraylLength - 1);
if (3>=1){

++];

swap(&array[i], &array[j]);

Quicksort is Part of the C Standard Library

The function prototype for quicksort is:

void (void *base, size_t nmemb, size_t size,
int (*compar)(const void*, const void*));

The arguments are:

base: the starting address of the array to sort

nmemb: the length of the array (number of elements)

size: the size (in bytes) of each element

compar: a function that takes a pointer to two elements and returns a result
-1 if the first argument is less than the second
1 if the first argument is greater than the second
g if the arguments are equal
(Note: this the same as strcmp)

Using to Sort an Array of Integers

int (const void *a, const void *b) {
int x = *((const int *) a);

int y = *((const int *) b);

if (x <) { return -1; }
else if (x > y) { return 1; }
else { return 0; }

int (void) {
int array[] = {16, 14, 8, 13, 26, 3, 6, 9, 4};
int arraylLength = ARRAY_LENGTH(array);
gsort(array, arraylLength, sizeof(int), compare);
printArray(array, arraylength);
return EXIT_SUCCESS;

We Could Use to Sort Program Arguments

int (const void *a, const void *b) {
const char **x = (const char **) a;
const char **y = (const char **) b;
return stremp(*x, *y);

}
int (int argc, const char *argv[]) {
if (argc < 2) {
return EXIT_FAILURE;
}
gsort(argv + 1, argc - 1, sizeof(const char *), compare);
for (int i = 1; i < arge; ++i) {
printf("%s\n", argv[il);
}
return EXIT_SUCCESS;
}

18

You'll Use Sorting Algorithms Instead of Writing Them
However, writing sorting algorithms are excellent C practice,
small errors produce the wrong result, or memory errors

is the most difficult sorting function to use since
you really have to understand memory, and the limitations of C
C has to use void* to be general and support different types

The primary design goal of C++ is to make operations
such as sorting easier to use and more efficient

I

