
Pointers

2025 Winter APS105: Computer Fundamentals

Jon Eyolfson

Lecture 12

1.0.1

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/

Recall: Computers Just Store Numbers

Assuming we have a 64 bit (8 byte) binary number,

we can represent it as a whole number using:

2
63

2
62

2
61

2
60

… 2
2

2
1

2
0

0 0 0 0 … 1 0 1

What decimal number would this be?

1

BinaryNumbers are Too Long toWrite Out and Read

Decimal numbers are for humans, but computers are based on powers of 2

Writing numbers using base 16 instead of 2 or 10 is more convenient

Decimal uses digits: 0 - 9

Binary uses bits: 0 - 1

Base 16 uses: 0 - 9, and 6 other characters

2

WeCall the Base 16Number SystemHexadecimal

We borrow letters to represent the values: 10 through 15

10 is a

11 is b

12 is c

13 is d

14 is e

15 is f

We could call a hexadecimal digit (0-9 and a-f) a hexit (but no one does)

In C, a hex (short for hexadecimal number), starts with 0x

Not testable, but will help you understand computers

3

WeCall the Base 16Number SystemHexadecimal

We borrow letters to represent the values: 10 through 15

10 is a

11 is b

12 is c

13 is d

14 is e

15 is f

We could call a hexadecimal digit (0-9 and a-f) a hexit (but no one does)

In C, a hex (short for hexadecimal number), starts with 0x

Not testable, but will help you understand computers

3

The SameRulesApply,Justwith aNewBase

This turns out to be convenient because each hex digit represents 4 bits

This works well with bytes: 2 hex digits represents 8 bits (or 1 byte)

16
15

16
14

16
13

16
12

… 16
2

16
1

16
0

0 0 0 0 … 0 f 4

What decimal number would this be?

(15× 16) + (4× 1) = 244

4

The SameRulesApply,Justwith aNewBase

This turns out to be convenient because each hex digit represents 4 bits

This works well with bytes: 2 hex digits represents 8 bits (or 1 byte)

16
15

16
14

16
13

16
12

… 16
2

16
1

16
0

0 0 0 0 … 0 f 4

What decimal number would this be? (15× 16) + (4× 1) = 244

4

AnAddressContains a Byte (Value in Blue,Address Below)

(Recall from Lecture 2)

57

512 000

5

512 001

0

512 002

0

512 003

254

512 004

202

512 005

0

512 006

0

512 007

5

WeWriteMemoryAddresses in Hex

(This is equivalent to the previous slide)

57

0x7d000

5

0x7d001

0

0x7d002

0

0x7d003

254

0x7d004

202

0x7d005

0

0x7d006

0

0x7d007

6

CStores theValue of int xSomewhere inMemory

57

0x7d000

5

0x7d001

0

0x7d002

0

0x7d003

0x7d004 0x7d005 0x7d006 0x7d007

Value of x

7

APointer is the StartingAddress of aValue inMemory

The & operator is the address of, its result is the pointer to the value

For values that take up multiple bytes, it’s always the lowest address

In the previous example, &x would be 0x7d004

8

PointersAre aNewType

Assume we have:

int x = 1;

We can’t do:

int z = &x;

The type of &x is int *

It’s a pointer to an integer value

9

Each TimeWeTake theAddress of aVariable,

WeAdd * to its Type

Assume we have:

int x = 1;

We can do:

int *z = &x;

The type of &z is int **

It’s a pointer to a pointer to an integer value

10

Each TimeWeTake theAddress of aVariable,

WeAdd * to its Type

Assume we have:

int x = 1;

We can do:

int *z = &x;

The type of &z is int **

It’s a pointer to a pointer to an integer value

10

YouCanOnly Take theAddress of aVariable

A variable stores a value in memory

(a value by itself may never be in memory)

If you try to do something like: &4

You may get a very unhelpful message

error: cannot take the address of an rvalue of type 'int'

11

YouCanOnly Take theAddress of aVariable

A variable stores a value in memory

(a value by itself may never be in memory)

If you try to do something like: &4

You may get a very unhelpful message

error: cannot take the address of an rvalue of type 'int'

11

WeCanUse the *Operator toAccess theValue at anAddress

Assume we have:

int x = 1;

int *z = &x;

We can do:

int y = *z;

After that statement, y = 1

Accessing a value through a pointer is called dereferencing

In the code above we’d say we dereference z

12

EachUse of the *Operator Removes a * from the Result Type

If we have the variable:

int **z;

The type of *z is int *

13

WeCanChangeValues of Variables Through Pointers

x: 1x: 3

y: 2

z: address

main

int main(void) {

int x = 1;

int y = 2;

int *z = &x;

*z = 3;

return 0;

}

14

WeCanChangeValues of Variables Through Pointers

x: 1x: 3

y: 2

z: address

main

int main(void) {

int x = 1;

int y = 2;

int *z = &x;

*z = 3;

return 0;

}

14

WeCanChangeValues of Variables Through Pointers

x: 1x: 3

y: 2

z: address

main

int main(void) {

int x = 1;

int y = 2;

int *z = &x;

*z = 3;

return 0;

}

14

WeCanChangeValues of Variables Through Pointers

x: 1x: 3

y: 2

z: address

main

int main(void) {

int x = 1;

int y = 2;

int *z = &x;

*z = 3;

return 0;

}

14

WeCanChangeValues of Variables Through Pointers

x: 1x: 3

y: 2

z: address

main

int main(void) {

int x = 1;

int y = 2;

int *z = &x;

*z = 3;

return 0;

}

14

FunctionsCanChangeValues ofVariables Through Pointers

x: 1x: 3

y: 2

z: address

main

p: address
setThree

void setThree(int *p) {

*p = 3;

}

int main(void) {

int x = 1;

int y = 2;

int *z = &x;

setThree(z);

return 0;

}

15

FunctionsCanChangeValues ofVariables Through Pointers

x: 1x: 3

y: 2

z: address

main

p: address
setThree

void setThree(int *p) {

*p = 3;

}

int main(void) {

int x = 1;

int y = 2;

int *z = &x;

setThree(z);

return 0;

}

15

FunctionsCanChangeValues ofVariables Through Pointers

x: 1x: 3

y: 2

z: address

main

p: address
setThree

void setThree(int *p) {

*p = 3;

}

int main(void) {

int x = 1;

int y = 2;

int *z = &x;

setThree(z);

return 0;

}

15

FunctionsCanChangeValues ofVariables Through Pointers

x: 1x: 3

y: 2

z: address

main

p: address
setThree

void setThree(int *p) {

*p = 3;

}

int main(void) {

int x = 1;

int y = 2;

int *z = &x;

setThree(z);

return 0;

}

15

FunctionsCanChangeValues ofVariables Through Pointers

x: 1x: 3

y: 2

z: address

main

p: address
setThree

void setThree(int *p) {

*p = 3;

}

int main(void) {

int x = 1;

int y = 2;

int *z = &x;

setThree(z);

return 0;

}

15

FunctionsCanChangeValues ofVariables Through Pointers

x: 1x: 3

y: 2

z: address

main

p: address
setThree

void setThree(int *p) {

*p = 3;

}

int main(void) {

int x = 1;

int y = 2;

int *z = &x;

setThree(z);

return 0;

}

15

WeCanPrint theAddress of a Pointer

The format specifier for pointers is: %p

It expects a type of void *

A void * is basically C saying the type is a generic pointer

We don’t need to know the type of the value it’s pointing to

You cannot dereference a void *

We’re allowed to cast a pointer to any type to a void *

16

WeCanAdd Print Statements toVerify

#include <stdio.h>

void setThree(int *p) {

printf("p [address is %p] = %p\n", (void *) &p, (void *) p);

printf(" *p = %d\n", *p);

*p = 3;

}

int main(void) {

int x = 1; int y = 2; int *z = &x;

printf("x [address is %p] = %d\n", (void *) &x, x);

printf("y [address is %p] = %d\n", (void *) &y, y);

setThree(z);

setThree(&y);

printf("x [address is %p] = %d\n", (void *) &x, x);

printf("y [address is %p] = %d\n", (void *) &y, y);

return 0;

}

17

YourMemoryAddressesWill Very Likely be Different

The result of running the program (for me) is:

x [address is 0xffffd2c47f38] = 1

y [address is 0xffffd2c47f34] = 2

p [address is 0xffffd2c47ee8] = 0xffffd2c47f38

*p = 1

p [address is 0xffffd2c47ee8] = 0xffffd2c47f34

*p = 2

x [address is 0xffffd2c47f38] = 3

y [address is 0xffffd2c47f34] = 3

Note, the address of p may change between function calls

18

Now,WeShould Understand the Swap Function

#include <stdio.h>

#include <stdlib.h>

void swap(int* a, int* b) {

int temp = *a;

*a = *b;

*b = temp;

}

int main(void) {

int a = 1;

int b = 2;

printf("main (before swap) a: %d, b: %d\n", a, b);

swap(&a, &b);

printf("main (after swap) a: %d, b: %d\n", a, b);

return EXIT_SUCCESS;

}

19

