
String

Recursion Exercises

2025 Winter APS105: Computer Fundamentals

Jon Eyolfson

Lecture 26

1.0.0

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/

ARecursive FunctionCalls Itself

We need two things:

1. a base case: a simple solution we know

2. a recursive step: reduces the problem to a smaller version of itself

1

Recursionwith Strings

There are 3 major ways to think about recursively using strings:

1. A character followed by a smaller string

2. A smaller string preceding a character

3. Two characters enclosing a smaller string

2

CanWeRecursively Check if a String is a Palindrome?

Reminder: a palindrome is a string that’s the same forwards as backwards

3

ARecursive Solution to Checking a Palindrome

bool is_palindrome_helper(const char *s, int first, int last) {

if (first >= last) {

return true;

}

else if (s[first] != s[last]) {

return false;

}

else {

return is_palindrome_helper(s, first + 1, last - 1);

}

}

bool is_palindrome(const char *s) {

return is_palindrome_helper(s, 0, strlen(s) - 1);

}

4

The following is more C features that you shouldn’t use for this course

However, you may need to read them, or use them in the future

5

There is a Ternary Conditional Operator

It’s another expression with the syntax:

<conditional> ? <value_if_true> : <value_if_false>

Where you replace:

<conditional> by a boolean expression

<value_if_true> is the result of the expression if the conditional is true

<value_if_false> is the result of the expression if the conditional is false

Examples:

true ? 1 : 0 1

false ? 1 : 0 0

You should only use these for very simple expressions

otherwise, the equivalent if and else is clearer

6

There is a Ternary Conditional Operator

It’s another expression with the syntax:

<conditional> ? <value_if_true> : <value_if_false>

Where you replace:

<conditional> by a boolean expression

<value_if_true> is the result of the expression if the conditional is true

<value_if_false> is the result of the expression if the conditional is false

Examples:

true ? 1 : 0 1

false ? 1 : 0 0

You should only use these for very simple expressions

otherwise, the equivalent if and else is clearer

6

YouCanGiveYour OwnMeaning toNumberswith enum

You can create your own type with enum, its syntax is:

enum <category_name> {

<value1_name> = <value1_int>,

<value2_name> = <value2_int>,

<...>,

};

Where you replace:

<category_name> with the name of what the values represent

<value1_name> with the name of something you want to give a value to

<value2_int> with the number you want C to use for that name

You can create as many values as you want separated by commas

You should define an enum just below the includes, and not within a function

7

WeCould Create an enumThat Represents aMonth

enum month {

JANUARY = 1,

FEBRUARY = 2,

MARCH = 3,

APRIL = 4,

MAY = 5,

JUNE = 6,

JULY = 7,

AUGUST = 8,

SEPTEMBER = 9,

OCTOBER = 10,

NOVEMBER = 11,

DECEMBER = 12,

};

8

An enum is Basically an int,But InsteadYouCanUseNames

bool isWinterSemester(enum month month) {

return month == JANUARY

|| month == FEBRUARY

|| month == MARCH

|| month == APRIL;

}

int main(void) {

enum month month;

printf("Enter a month (1-12): ");

scanf("%d", &month);

if (isWinterSemester(month)) {

printf("The month is probably the winter semester\n");

}

else {

printf("The month is not in the winter semester\n");

}

return EXIT_SUCCESS;

}

9

WeCould Create an enumThat Represents a Direction

enum direction {

NORTH = 1,

EAST,

SOUTH,

WEST,

};

If we don’t specify an integer value for the rest of the values,

C creates values by just incrementing the integers sequentially

If you don’t specify any values, the first value is by default 0

The above is equivalent to:

enum direction {

NORTH = 1,

EAST = 2,

SOUTH = 3,

WEST = 4,

};

10

Creating a Function to PrintWhat theValue Represents

void printDirection(enum direction d) {

if (d == NORTH) {

printf("North\n");

}

else if (d == EAST) {

printf("East\n");

}

else if (d == SOUTH) {

printf("South\n");

}

else if (d == WEST) {

printf("West\n");

}

else {

exit(EXIT_FAILURE);

}

}

11

Instead ofMany ifs that Check aValue,Use a switch

The syntax of a switch statement is:

switch (<variable>) {

case <value1>:

case <value2>:

<...>

}

C will skip to the case statement for the matching value and start running code

It’ll continue running (any other case statement is ignored) until:

a break; statment, skipping to the closing } for the switch, or

it runs until the closing } for the switch

We can use default: to represent where to go if there is not a match

Otherwise, if there’s no match, we skip to the end

12

Re-writing the Previous Function to Use a switchStatement

void printDirection(enum direction d) {

switch (d) {

case NORTH:

printf("North\n");

break;

case EAST:

printf("East\n");

break;

case SOUTH:

printf("South\n");

break;

case WEST:

printf("West\n");

break;

default:

exit(EXIT_FAILURE);

}

}

13

YouCan RenameTypeswith typedef

The syntax of a typedef, is:

typedef <type> <new_name>;

Where you replace:

<new_name> by the name of whatever you’d like to name your type

<type> by the type you would like to use when you use <new_name>

For example, you could write:

typedef int number_t;

Aftewards, you could declare variables with type number_t, then later

change all your types by modifying to typedef double number_t;

Note, usually you append _t to the name to indicate it’s a type

14

YouCan RenameTypeswith typedef

The syntax of a typedef, is:

typedef <type> <new_name>;

Where you replace:

<new_name> by the name of whatever you’d like to name your type

<type> by the type you would like to use when you use <new_name>

For example, you could write:

typedef int number_t;

Aftewards, you could declare variables with type number_t, then later

change all your types by modifying to typedef double number_t;

Note, usually you append _t to the name to indicate it’s a type

14

Generally,Creating a typedef For Numbers is a Bad Idea

#include <stdio.h>

#include <stdlib.h>

typedef int number_t;

int main(void) {

number_t a = 2;

number_t b = 3;

printf("a + b = %d\n", a + b);

return EXIT_SUCCESS;

}

What happens if we change to typedef double number_t;?

15

ATypical Use of typedef Is to SaveUs fromWriting enum

You’re able to create an enum without giving it a name, you may write:

typedef enum {

NORTH = 1,

EAST,

SOUTH,

WEST,

} direction_t;

Afterwards, you can create a variable with:

direction_t direction = NORTH;

16

Final Exercise,Going Back to String Recursion

Can we implement strchr recursively?

17

