
Arithmetic

2025 Winter APS105: Computer Fundamentals

Jon Eyolfson

Lecture 4

1.0.1

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/


WeCanPerformArithmetic in C

An expression is a combination of operands and operators

which results in a single value, e.g. 1 + 2 or 3

There’s all the operators you would expect: + - * /

They also follow the order of operations: BEDMAS

Brackets

Exponents

Division / Multiplication

Addition / Subtraction

We also work left to right, this is called left-associative

1



WeCanPerformArithmetic in C

An expression is a combination of operands and operators

which results in a single value, e.g. 1 + 2 or 3

There’s all the operators you would expect: + - * /

They also follow the order of operations: BEDMAS

Brackets

Exponents

Division / Multiplication

Addition / Subtraction

We also work left to right, this is called left-associative

1



It’s Important toAgree on theOrder

1 + 2 + 3

It’s left-associative that means we compute it as (1 + 2) + 3

If instead it was right-associate we compute it as 1 + (2 + 3)

1 + 2 * 3

Because * has higher precedence we compute it as 1 + (2 * 3)

All precedence rules are here: CPlusPlus.com

2

https://cplusplus.com/doc/tutorial/operators/


Division of intValues BehaveDifferently

If we write out the types of the operands, int / int

results in another int value

If we compute 5 / 2 the result is 2

There’s no rounding, the result is the quotient

We can use the modulo operator (%) to get the remainder

(it has the same precedence as division and multiplication)

For example, the result of 5 % 2 is 1

Both operands of a % must be int

3



Division of intValues BehaveDifferently

If we write out the types of the operands, int / int

results in another int value

If we compute 5 / 2 the result is 2

There’s no rounding, the result is the quotient

We can use the modulo operator (%) to get the remainder

(it has the same precedence as division and multiplication)

For example, the result of 5 % 2 is 1

Both operands of a % must be int

3



CRules forModulo Operator

The quotient is always truncated, which means:

take what the result “should” be and chop off the decimal part

The rule for C is: if we can represent a / b then

(a / b) * b + (a % b) shall equal a

Examples:

a b a / b a % b

5 2 2 1

5 -2 -2 1

-5 2 -2 -1

-5 -2 2 -1

4



WhyCan’tWeRepresent a / b?

The main thing we can’t represent is: division by zero

In mathematics this is impossible, but we can write it in C

1 / 0 will compile and give you a value

However, the value you get back is undefined

This means the value could be different every time,

different on different computers, etc.

In C, we call this undefined behavior (US spelling)

Undefined behavior (UB) is one of the harder types of problems to debug

You should avoid it at all costs!

5



WhyCan’tWeRepresent a / b?

The main thing we can’t represent is: division by zero

In mathematics this is impossible, but we can write it in C

1 / 0 will compile and give you a value

However, the value you get back is undefined

This means the value could be different every time,

different on different computers, etc.

In C, we call this undefined behavior (US spelling)

Undefined behavior (UB) is one of the harder types of problems to debug

You should avoid it at all costs!

5



WhyCan’tWeRepresent a / b?

The main thing we can’t represent is: division by zero

In mathematics this is impossible, but we can write it in C

1 / 0 will compile and give you a value

However, the value you get back is undefined

This means the value could be different every time,

different on different computers, etc.

In C, we call this undefined behavior (US spelling)

Undefined behavior (UB) is one of the harder types of problems to debug

You should avoid it at all costs!

5



What Happens IfWeMix Types?

The operators + - * / % are all binary operators

If both operands are int the result is an int

Recall: for % both operands must be int

If at least one operand is a double, the other will

be converted to a double if it is not one already

6



WhenWeConvert an int to a doubleWeAdd .0

If we write 2.5 + 2, 2 (int) gets converted to 2.0 (double)

The result will be 4.5

This automatic type conversion is called implicit type conversion

Implicit means we did not request the type conversion

7



Conversion Froma double to an intTruncates

We can do an explicit type conversion with a type cast

A type cast is a unary operator that has the form: (<type>) <value>

It has a higher precedence than the binary operators

It is right associative (right-to-left)

(int) 2.9 gets truncated to 2

(double) 5 / 2 gets computed as ((double) 5) / 2

So, after the first step we get 5.0 / 2 then 2.5

(double) (int) 2.9 gets computed as ((double) ((int) 2.9))

So, after the first step we get (double) 2 then 2.0

8



Conversion Froma double to an intTruncates

We can do an explicit type conversion with a type cast

A type cast is a unary operator that has the form: (<type>) <value>

It has a higher precedence than the binary operators

It is right associative (right-to-left)

(int) 2.9 gets truncated to 2

(double) 5 / 2 gets computed as ((double) 5) / 2

So, after the first step we get 5.0 / 2 then 2.5

(double) (int) 2.9 gets computed as ((double) ((int) 2.9))

So, after the first step we get (double) 2 then 2.0

8



Conversion Froma double to an intTruncates

We can do an explicit type conversion with a type cast

A type cast is a unary operator that has the form: (<type>) <value>

It has a higher precedence than the binary operators

It is right associative (right-to-left)

(int) 2.9 gets truncated to 2

(double) 5 / 2 gets computed as ((double) 5) / 2

So, after the first step we get 5.0 / 2 then 2.5

(double) (int) 2.9 gets computed as ((double) ((int) 2.9))

So, after the first step we get (double) 2 then 2.0

8



Conversion Froma double to an intTruncates

We can do an explicit type conversion with a type cast

A type cast is a unary operator that has the form: (<type>) <value>

It has a higher precedence than the binary operators

It is right associative (right-to-left)

(int) 2.9 gets truncated to 2

(double) 5 / 2 gets computed as ((double) 5) / 2

So, after the first step we get 5.0 / 2 then 2.5

(double) (int) 2.9 gets computed as ((double) ((int) 2.9))

So, after the first step we get (double) 2 then 2.0

8



Assignment is Also anOperator

It’s a binary operator that’s right associative,

with the lowest precedence we’ve seen so far

The result of the assignment operator is the value assigned

e.g. the result of x = 3 is 3

This means y = x = 3 gets computed as (y = (x = 3))

So, after the first step we assign 3 to x and we get y = (3)

then we assign 3 to y

9



Assignment is Also anOperator

It’s a binary operator that’s right associative,

with the lowest precedence we’ve seen so far

The result of the assignment operator is the value assigned

e.g. the result of x = 3 is 3

This means y = x = 3 gets computed as (y = (x = 3))

So, after the first step we assign 3 to x and we get y = (3)

then we assign 3 to y

9



There’s Other ShorthandAssignment Operators

You may find yourself doing something like:

x = x * 2;

Instead of this you can write:

x *= 2;

It applies the operation to the value on the left of the assignment,

then re-assigns it with the result

There are shorthands for all the binary operators:

+= -= *= /= %=

10



There’s Other ShorthandAssignment Operators

You may find yourself doing something like:

x = x * 2;

Instead of this you can write:

x *= 2;

It applies the operation to the value on the left of the assignment,

then re-assigns it with the result

There are shorthands for all the binary operators:

+= -= *= /= %=

10



There’sMore Shorthands For Adding and Subtracting by 1

This is a very common operation while programming

Adding 1 to a variable is called incrementing

Subtracting 1 from a variable is called decrementing

The unary operator is ++ (increment), and -- (decrement)

For each there’s two versions, the operator can either come:

before the variable (prefix), or

after the variable (postfix)

11



Prefix and Postfix Increment andDecrement Differ

The difference between the two is the result of the operation

Assume initially we have: int x = 0;

++x will add 1 to x and the result is the updated value

In this case the result of ++x is 1

x++ will add 1 to x and the result is the original value

In this case the result of x++ is 0

In both cases x gets re-assigned a value of 1

You should always prefer prefix over postfix unless necessary

12



Prefix and Postfix Increment andDecrement Differ

The difference between the two is the result of the operation

Assume initially we have: int x = 0;

++x will add 1 to x and the result is the updated value

In this case the result of ++x is 1

x++ will add 1 to x and the result is the original value

In this case the result of x++ is 0

In both cases x gets re-assigned a value of 1

You should always prefer prefix over postfix unless necessary

12



Prefix and Postfix Increment andDecrement Differ

The difference between the two is the result of the operation

Assume initially we have: int x = 0;

++x will add 1 to x and the result is the updated value

In this case the result of ++x is 1

x++ will add 1 to x and the result is the original value

In this case the result of x++ is 0

In both cases x gets re-assigned a value of 1

You should always prefer prefix over postfix unless necessary

12



sizeofTells You theNumber of Bytes Used

sizeof is a unary operator that works with variables or types

The result is the number bytes used as an integer

We can use this to verify the number of bytes used for some types:

The result of sizeof(int) is 4

The result of sizeof(double) is 8

The result of sizeof(char) is 1

The result of sizeof(bool) is 1

If we declare double x; then the result of sizeof(x) is 8

13



Summary of the Precedence Rules for Today’s Operators

Operator Associativity

++ -- (postfix) Left-to-right

++ -- (prefix)

(<type>) (cast)

& (address-of)

sizeof

Right-to-left

* / % Left-to-right

+ - Left-to-right

= += -= *= /= %=

(assignments)

Right-to-left

Higher Precedence

Lower Precedence

14



YouCanAddComments toYour Code

A comment is a note for you and others to read, the compiler ignores them

Any text between /* and */ is considered a comment

You can also use //, anything after is ignored (until a newline)

#include <stdio.h>

#include <stdlib.h> /* I need this for EXIT_SUCCESS. */

/* The program will start here.

It will finish when it hits return. */

int main(void) {

printf("Hello world\n");

return EXIT_SUCCESS;

}

15



YouCanAddComments toYour Code

A comment is a note for you and others to read, the compiler ignores them

Any text between /* and */ is considered a comment

You can also use //, anything after is ignored (until a newline)

#include <stdio.h>

#include <stdlib.h> /* I need this for EXIT_SUCCESS. */

/* The program will start here.

It will finish when it hits return. */

int main(void) {

printf("Hello world\n");

return EXIT_SUCCESS;

}

15



BeCareful with Truncated Integer Division

If you ask someone, what is 1/2 + 1/2?

The answer should be 1, what would it be in C?

Since / has higher precedence than +, we would compute this as:

(1/2) + (1/2)

The result of 1/2 is 0, so we get:

0 + 0 which is 0

16



BeCareful with Truncated Integer Division

If you ask someone, what is 1/2 + 1/2?

The answer should be 1, what would it be in C?

Since / has higher precedence than +, we would compute this as:

(1/2) + (1/2)

The result of 1/2 is 0, so we get:

0 + 0 which is 0

16



BeCareful with Truncated Integer Division

If you ask someone, what is 1/2 + 1/2?

The answer should be 1, what would it be in C?

Since / has higher precedence than +, we would compute this as:

(1/2) + (1/2)

The result of 1/2 is 0, so we get:

0 + 0 which is 0

16


