
Lecture 3 1.0.0
2023 Fall ECE 344: Operating Systems

Libraries

Jon Eyolfson
2023 Fall

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba

http://creativecommons.org/licenses/by-sa/4.0/


What is an Operating System?

The kernel is part of an operating system, but what else?

Is macOS, iOS, iPadOS, watchOS, and tvOS all different operating systems?

1



ApplicationsMay Pass ThroughMultiple Layers of Libraries

User space
Kernel space

C Standard Library (libc)

System Daemon (udev) Display Server (Wayland)

GUI Toolkit (GTK)

NetworkManager LibreOffice Firefox

2



What an Operating System is Depends on the Application

Android and Debian both use the Linux kernel, but the applications are different

Maybe they’re the same OS if you only care about terminal applications

“Linux” distributions may be considered GNU/Linux
GNU distributes the standard C library and common utilities

An operating system consists of a kernel and libraries required for your application

3



Normal Compilation in C

main.c

util.c

foo.c

bar.c

main.o

util.o

foo.o

bar.o

executable
Compilation Linkage

Note: object files (.o) are just ELF files with code for functions
4



Static Libraries Are Included At Link Time

util.o

foo.o

bar.o

lib.aArchive

main.o

lib.a

executable
Linkage

5



Dynamic Libraries Are For Reusable Code

The C standard library is a dynamic library (.so), like any other on the system
Basically a collection of .o files containing function definitions

Multiple applications can use the same library:

Application 1 Application 2

libc.so

The operating system only loads libc.so in memory once, and shares it

6



Dynamic Libraries Are Included At Runtime

util.o

foo.o

bar.o

lib.so
Shared Linkage

main.o executable

lib.so

Linkage

Linked at Runtime

7



Useful Command Line Utility for Dynamic Libraries

ldd <executable>
shows which dynamic libraries an executable uses

8



Static vs Dynamic Libraries

Another option is to statically link your code
Basically copies the .o files directly into the executable

The drawbacks compared to dynamic libraries:
• Statically linking prevents re-using libraries
(commonly used libraries have many duplicates)

• Any updates to a static library requires the executable to be recompiled

What are issues with dynamic libraries?

9



Dynamic Libraries Updates Can Break Executables

A dynamic library update may subtly change the ABI causing a crash

Consider the following in a dynamic library:
A struct with multiple fields corresponding to a specific data layout (C ABI)

An executable accesses the fields of the struct used by a dynamic library

Now if a dynamic library reorders the fields
The executable uses the old offsets and is now wrong

Note: this is OK if the dynamic library never exposes the fields of a struct

10



CUses a Consistent ABI for structs

structs are laid out in memory with the fields matching the declaration order
C compilers ensure the ABI of structs are the consistent for an architecture

Consider the following structures:

Library v1:
struct point {
int y;
int x;

};

Library v2:
struct point {

int x;
int y;

};

For v1 the x field is offset by 4 bytes from the start of struct point’s base
For v2 it is offset by 0 bytes, and this difference will cause problems

11



After Compilation the Translation Differs for Each Version

12



The Point API Has Four Functions

13



ABI Stable Code Should Always Print “1, 2” for Both Lines

#include <stdio.h>
#include <stdlib.h>

#include "point.h"

int main(void) {
struct point *p = point_create(1, 2);

printf("point (x, y) = %d, %d (using library)\n",
point_get_x(p), point_get_y(p));

printf("point (x, y) = %d, %d (using struct)\n", p->x, p->y);

point_destroy(p);
return 0;

}

14



Try the Previous Example

We could set LD_LIBRARY_PATH to build/v1 or build/v2 to simulate a library update

Run the following commands to see for yourself:

build/point-example-compile-v1-link-v1
LD_LIBRARY_PATH=build/v2 build/point-example-compile-v1-link-v1

Note: you’d also have a problem if you compiled with v2 and used v1

15



Mismatched Versions Don’t Agree on the Location of X and Y

16



Mismatched Versions of This Library Causes Problems

The definition of struct point in both libraries is different
Order of x and y change (and therefore their offsets)

Our code works correctly if the compiled and linked versions match
If you expose a struct it becomes part of your ABI!

Let’s try executing different combinations:
build/point-example-compile-v1-link-v1
build/point-example-compile-v1-link-v2
build/point-example-compile-v2-link-v1
build/point-example-compile-v2-link-v2

A proper stable ABI would hide the struct from point.h
17



Semantic VersioningMeets Developer’s Expectations

From https://semver.org/

Given a version number MAJOR.MINOR.PATCH, increment the:
• MAJOR version when you make incompatible API/ABI changes
• MINOR version when you add functionality in a backwards-compatible manner
• PATCH version when you make backwards-compatible bug fixes

18

https://semver.org/


Dynamic Libraries Allow Easier Debugging

Control dynamic linking with environment variables
LD_LIBRARY_PATH and LD_PRELOAD

Consider the following example:

#include <stdlib.h>
#include <stdio.h>

int main(void) {
int *x = malloc(sizeof(int));
printf("x = %p\n", (void *)x);
free(x);
return 0;

}

19



WeCanMonitor All Allocationswith Our Own Library

Normal runs of alloc-example outputs:
x = 0x561116384260

Create liballoc-wrapper.so that outputs all malloc and free calls
Run: LD_PRELOAD=build/liballoc-wrapper.so build/alloc-example

Call to malloc(4) = 0x55c12aa40260
Call to malloc(1024) = 0x55c12aa40280
x = 0x55c12aa40260
Call to free(0x55c12aa40260)

Interesting, we did not make 2 malloc calls
20



DetectingMemory Leakswith Valgrind

valgrind is another useful tool to detect memory leaks from malloc and free
Usage: valgrind <executable>

Here’s a note from the man pages regarding what we saw:

“The GNU C library (libc.so), which is used by all programs, may allocate memory
for its own uses. Usually it doesn’t bother to free that memory when the program
ends—there would be no point, since the Linux kernel reclaims all process resources
when a process exits anyway, so it would just slow things down.”

Note: this does not excuse you from not calling free!

21



DetectingMemory Leakswith AddressSanitizer

There’s also sanitizer tools built into Clang (and now gcc), but you have to recompile
Add the -Db_sanitize=address flag to Meson

rm -rf build
meson setup build -Db_sanitize=address
meson compile -C build

22



SystemCalls are Rare in C

Mostly you’ll be using functions from the C standard library instead

Most system calls have corresponding function calls in C, but may:
• Set errno
• Buffer reads and writes (reduce the number of system calls)
• Simplify interfaces (function combines two system calls)
• Add new features

23



C exitHas Additional Features
System call exit (or exit_group): the program stops at that point

C exit: there’s a feature to register functions to call on program exit (atexit)

#include <stdio.h>
#include <stdlib.h>

void fini(void) {
puts("Do fini");

}

int main(void) {
atexit(fini);
puts("Do main");
return 0;

}
24



Operating Systems Provide the Foundation for Libraries

We learned:
• Dynamic libraries and a comparison to static libraries

• How to manipulate the dynamic loader
• Example of issues from ABI changes without API changes

25


