
Lecture 7 1.0.0
2023 Fall ECE 344: Operating Systems

Process Practice

Jon Eyolfson
2023 Fall

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba

http://creativecommons.org/licenses/by-sa/4.0/


ATeaching Operating System

https://github.com/mit-pdos/xv6-riscv

Used in MIT graduate OS courses, it is a full OS you can run on the VM
You’ll run it as a VM using QEmu (yes, a VM in a VM)

It’s a re-implementation of Unix version 6 for RISC-V in C

1

https://github.com/mit-pdos/xv6-riscv


Uniprogramming is for Old Batch Processing OSs

Uniprogramming: only one process running at a time
Two processes are not parallel and not concurrent, no matter what

Multiprogramming: allow multiple processes
Two processes can run in parallel or concurrently

Modern operating systems try to run everything in parallel and concurrently

2



The Scheduler DecidesWhen To Switch

To create a process, the operating system has to at least load it into memory

When it’s waiting, the scheduler (coming later) decides when it’s running

We’re going to first focus on the mechanics of switching processes

3



The Core Scheduling Loop Changes Running Processes

1. Pause the currently running process
2. Save its state, so you can restore it later
3. Get the next process to run from the scheduler
4. Load the next process’ state and let that run

4



WeCan Let Processes Themselves, or the Operating System
Pause

Cooperative multitasking
The processes use a system call to tell the operating system to pause it

True multitasking
The operating system retains control and pauses processes

For true multitasking the operating system can:
• Give processes set time slices
• Wake up periodically using interrupts to do scheduling

5



Swapping Processes is called Context Switching

We’ve said that at minimum we’d have to save all the current registers
We have to save all the values, using the same CPU as we’re trying to save

There’s hardware support for saving state, however you may not want to save
everything

Context switching is pure overhead, we want it to be as fast as possible

Usually there’s a combination of hardware and software to save as little as possible

6



ANewAPI— pipe

int pipe(int pipefd[2]);

Returns 0 on success, and -1 on failure (and sets errno)

pipe forms a one-way communication channel using two file descriptors
pipefd[0] is the read end of the pipe
pipefd[1] is the write end of the pipe

You can think of it as a kernel managed buffer
Any data written to one end can be read on the other end

7



Aside: Using & in Your Shell

If you use & at the end of your command, your shell will start that process and return
e.g. sleep 1 &

It outputs the pid and lets you know when it’s finished

The | character creates a pipe between two processes

The sneaky Bash fork bomb is: :(){ :|:& };:
Do not run this command

8



Let’s See the Example

See: 07-process-practice/pipes.c

If we remove the call to write in the parent, the child never exits

What happens to the child?

9



Final 2022 Question 1
For each program shown below, state whether it will produce the same output each
time it is run, or whether it may produce different outputs when run multiple times.
Explain why the program behaves like this.

int main() {
int i = 4;
while (i ツ⾳ 0) {
int pid = fork();
if (pid ⿂⿻ 0) {

i--;
}
else {

printf("%d\n", i);
exit(0);

}
}
return 0;

}
10



Final 2022 Question 2

Same as the previous question, except now there’s a waitpid

int main() {
int i = 4;
while (i ツ⾳ 0) {
int pid = fork();
if (pid ⿂⿻ 0) {

i--;
}
else {

waitpid(pid, NULL, 0);
printf("%d\n", i);
exit(0);

}
}
return 0;

}
11


