Process Creation

2024 Fall ECE 344: Operating Systems Lecture 4
Jon Eyolfson 2.0.1

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/

Recall: A Process is an Instance of a Running Program

Process

We Can Add More to a Process

Process

Specifically, in Linux, this is the you can browse on

It contains:

® Process state

e CPU registers

Scheduling information

¢ Memory management information

I/O status information

Any other type of accounting information

Each process gets a unique process ID (pid) to keep track of it

https://github.com/torvalds/linux/blob/master/include/linux/sched.h#L743

Process State Diagram (You Could Rename Waiting to Ready)

4

o =

Blocked

y
o

Terminated

There's a standard /proc directory (on Linux) that represents the kernel's
state
These aren't real files, they just look like it!

Every directory that's a number (process ID) in /proc represents a process

There's a file called status that contains the state (used for Lab 1)

We load the program into memory and create the process control block
(this is what Windows does)

Unix decomposes process creation into more flexible abstractions

Pause the currently running process, and copy it's PCB into a new one
This will reuse all of the information from the process, including variables!

Distinguish between the two processes with a parent and child relationship
They could both execute different parts of the program together

We could then allow either process to load a new program and setup a new
PCB

fork() as the following API:

e Returns the process ID of the newly created child process
-1: on failure
0: in the child process
>0: in the parent process

There are now 2 processes running
Note: they can access the same variables, but they're separate
Operating system does “copy on write” to maximize sharing

On POSIX Systems, You Can Find Documentation Using man

We'll be using the following APIs:
e fork

® execve

® wait (next lecture)

You can use man <function> to look up documentation,
or man <number> <function>

2: System calls

3: Library calls

fork-example.c Has One Process Execute Each Branch

int main(int argc, char *argv[]) {
pid_t returned_pid = fork();
(retured_pid == -1) {
int err = errno;
perror("fork failed");

err;
}
(returned_pid == 0) {
printf("Child returned pid: %d\n", returned_pid);
printf("Child pid: %d\n", getpid());
printf("Child parent pid: %d\n", getppid());
}
{
printf("Parent returned pid: %d\n", returned_pid);
printf("Parent pid: %d\n", getpid());
printf("Parent parent pid: %d\n", getppid());

}
0;

10

execve has the following API:
e pathname: Full path of the program to load

e argv: Array of strings (array of characters), terminated by a null pointer
Represents arguments to the process

® envp: Same as argv
Represents the environment of the process

e Returns an error on failure, does not return if successful

1

execve-example.c Turns the Process into 1s

int main(int argc, char *argv[]) {
printf("I'm going to become another process\n");
char *exec_argv[] = {"1s", NULL};
char *exec_envp[] = {NULL};
int exec_return = execve('"/usr/bin/ls", exec_argv, exec_envp);
(exec_return == -1) {
exec_return = errno;
perror("execve failed");
exec_return;
}

printf("If execve worked, this will never print\n");
0;

12

The operating system has to:

e Maintain process control blocks, including state

® Create new processes

e L oad a program, and re-initialize a process with context

13

