
Lecture 16
ECE 344: Operating Systems

Lab 4 Primer
1.0.0

Jon Eyolfson
October 17, 2022

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

cba

http://creativecommons.org/licenses/by-sa/4.0/


We Want to Send and Recieve Data From a Process

1. Create a new process that launches the command line argument

2. Send the string Testing\n to that process

3. Receive any data it writes to standard output

1



Our First New API — pipe

int pipe(pipefd[2]);

Returns 0 on success, and -1 on failure (and sets errno)

pipe forms a one-way communication channel using two file descriptors
pipefd[0] is the read end of the pipe
pipefd[1] is the write end of the pipe

You can think of it as a kernel managed buffer
Any data written to one end can be read on the other end

2



A More Convenient API – execlp

int execlp(const char *file, const char *arg /*..., (char *) NULL */);

Does not return on success, and -1 on failure (and sets errno)

execlp will let you skip using string arrays (using C varargs),
and it will also search for executables using the PATH environment variable

3



Our Next API — close

int close(int fd);

Returns 0 on success, and -1 on failure (and sets errno)

Closes the file descriptor for the process, no longer usable

This frees up the file desciptor (recall, it’s just a number) to be reused

4



Our Final APIs — dup and dup2

int dup(int oldfd);

int dup2(int oldfd, int newfd);

Returns a new file descriptor on success, and -1 on failure (and sets errno)

Copies the file descriptor so oldfd and newfd refer to the same thing

For dup it’ll return the lowest file descriptor

For dup2 it’ll atomically close the newfd argument (if open),
and then make newfd refer to the same thing

5



Coding Example

Done live!

You can find the template in lecture-16 in the examples repository

To compile it, run the following commands:

cd lecture-16 # if not already there
mkdir build
cd build
cmake ..
cmake --build . # or make

Run the program using: ./subprocess <program>

6



Running with cat May Cause Problems

Run the program with the following arguments:

./subprocess uname

./subprocess cat

You have to be careful with the file descriptors!

Why might cat not exit when using pipes?

7


