
Lecture 18
ECE 344: Operating Systems

Quiz 2 Review
1.0.0

Jon Eyolfson
October 20, 2022

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

cba

http://creativecommons.org/licenses/by-sa/4.0/


A Forking Question

Consider the following code:

int main() {
pid_t first = fork();
pid_t second = fork();
pid_t third = fork();
printf("first=%d second=%d third=%d\n", first, second, third);

}

What is one reasonable set of outputs (assume the initial process is pid 2)?

What order are the outputs in?

What do the relationships between processes look like?

1



A Threading Question

Assume you have a global variable, int i; and 3 threads.

Before any thread executes, i is initialized to 0

Two threads execute i++ and one executes i--

What are all the possible values of i after all threads execute?

2



Unix Systems Clone Processes with a Parent/Child Relationship

• You can only create new processes with fork
• After a fork both processes are exactly the same

• except for the value of pid (the child is always 0)
• The scheduler decides when to run either process

3



You’re Responsible for Managing Processes

The operating system maintains a strict parent/child relationship

You should be able to identify (and prevent) the following:
• Zombie processes
• Orphan processes

For quiz 2: the focus would be more on wait

4



We Explored Basic IPC in an Operating System

Some basic IPC includes:
• read and write through file descriptors (could be a regular file)
• Redirecting file descriptors for communcation
• Signals

Signals are like interrupts for user processes
The kernel has to handle all 3 kinds of “interrupts”

For quiz 2: this isn’t covered

5



Threads Enable Concurrency

We explored threads, and related them to something we already know (processes)
• Threads are lighter weight, and share memory by default
• Each process can have multiple threads (but just one at the start)

6



Both Processes and (Kernel) Threads Enable Parallelization

• Each process can have multiple (kernel) threads
• Most implementations use one-to-one user-to-kernel thread mapping
• The operating system has to manage what happens during a fork, or signals
• We now have synchronization issues

7



We Want Critical Sections to Protect Against Data Races

We should know what data races are, and how to prevent them:
• Mutex or spinlocks are the most straightforward locks
• We need hardware support to implement locks
• We need some kernel support for wake up notifications
• If we know we have a lot of readers, we should use a read-write lock

8



We Used Semaphores to Ensure Proper Order

Previously we ensured mutual exclusion, now we can ensure order
• Semaphores contain an initial value you choose
• You can increment the value using post
• You can decrement the value using wait (it blocks if the current value is 0)
• You still need to be prevent data races

9



We Explored More Advanced Locking

We have another tool to ensure order
• Condition variables are clearer for complex condition signaling
• Locking granularity matters
• You must prevent deadlocks

10



Final Questions or Concerns?

Ashvin and I will be on Discord, we’ll announce any issues (hopefully none!)

Format: 2 true/false, 2 multiple choice, 2 short answer (free form)

Expect to take around 47 minutes total:
1 minute for true/false,
10 minutes for each multiple choice,
10 minutes for the first short answer,
and 15 minutes for the final short answer.

Good luck!

11


