ECE 344: Operating Systems
Lecture 8

Threads Implementation

1.1.1

Jon Eyolfson
September 26, 2022

©@®O

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License


http://creativecommons.org/licenses/by-sa/4.0/

Multithreading Models

Where do we implement threads?
We can either do user or kernel threads

User threads are completely in user-space
Kernel doesn’t treat your threaded process any differently

Kernel threads are implemented in kernel-space
Kernel manages everything for you, and can treat threads specially



Thread Support Requires a Thread Table

Similar to the process table we saw previously
It could be in user-space or kernel-space depending

For user threads, there also needs to be a run-time system to determine scheduling

In both models each process can contain multiple threads



We Could Avoid System Calls, or Let a Thread Block Everything

For pure user-level threads (again, no kernel support):
® Very fast to create and destroy, no system call, no context switches

® One thread blocks, it blocks the entire process (kernel can’t distinguish)

For kernel-level threads:
® Slower, creation involves system calls

® |f one thread blocks, the kernel can schedule another one



All Threading Libraries You Use Run in User-mode

The thread library maps user threads to kernel threads

Many-to-one: threads completely implemented in user-space
the kernel only sees one process

One-to-one: one user thread maps directly to one kernel thread
the kernel handles everything

Many-to-many: many user-level threads map to many kernel level threads



Many-to-one is Pure User-space Implementation

It’s fast (as outlined before) and portable
It doesn’t depend on the system, it's just a library

Drawbacks are that one thread blocking causes all threads to block
Also we cannot execute threads in parallel
The kernel will only schedule a process to run



One-to-one Just Uses the Kernel Thread Implementation

There’s just a thin wrapper around the system calls to make it easier to use

Exploits the full parallelism of your machine
The kernel can schedule multiple threads simultaneously

We do however need to use a slower system call interface,
and we lose some control

Typically this is the actual implementation used, we’'ll assume this for Linux



Many-to-many is a Hybrid Approach

The idea is that there are more user-level threads than kernel-level threads
Cap the number of kernel-level threads to the number we could run in parallel

We can get the most out of multiple CPUs and reduce the number of system calls

However, this leads to a complicated thread library
Depending on your mapping luck, you may block other threads



Threads Complicate the Kernel

How should fork work with a process with multiple threads?
Copy all threads to the new process, in whatever state they're in?
How would this get out of hand?

Linux only copies the thread that called fork into a new process
If it hits pthread_exit it'll always exit with status O
(at least as far as | can tell)

There’s pthread_atfork (not covered in this course) to control what happens



Signals are Sent to a Process

Which thread should receive a signal? all of them?

Linux will just pick one random thread to handle the signal
Makes concurrency hard, any thread could be interrupted



Instead of Many-to-many, You Can Use a Thread Pool

The goal of many-to-many thread mapping is to avoid creation costs

A thread pool creates a certain number of threads and a queue of tasks
(maybe as many threads as CPUs in the system)

As requests come in, wake them up and give them work to do

Reuse them, when there’s no work, put them to sleep

10



You'll Implement Many-to-one

thread_create thread_yield

o e

thread_exit

thread_sleep

thread_wakeup

Blocked



Your Scheduler Can Just Be Round Robin

Create a queue (list), run the thread at the front, when it yeilds at it to the back

You'll have to do the context switch (remember, you'll have to save the registers)

These are cooperative threads, so they have to be nice (next is preemptive threads)

12



Our Next Complication

Let's create a program that spawns 8 threads
Each thread increments the same variable 10,000 times

What should the final value of the variable be?
The initial value of the variable is O

Run lecture-08/pthread-datarace
Can you fix it?

13



Both Processes and (Kernel) Threads Enable Parallelization

® Each process can have multiple (kernel) threads

Most implementations use one-to-one user-to-kernel thread mapping
® The operating system has to manage what happens during a fork, or signals

® We now have synchronization issues



