Lab 2: We're Going Deeper Than Subprocess 1.6.5

ECE 353: Systems Software

Jonathan Eyolfson

January 30, 2023 Due: February 13, 2023 @ 11:59 PM ET

In this lab you'll create a small library called Subsubprocess (ssp) that acts as a subreaper in addition to
creating and monitoring processes. Your implementation should use the concepts learned during the
lectures, along with some new system calls. As a change, you create library called libssp this lab, not
an executable. You'll be using Git to submit your work and save your progress.

Lab setup. Ensure you're in the repository (cd ~/ece3b3-1abs) directory. Make sure you have the lat-
est skeleton code from us by running: git pull upstream main.

This will create a merge, which you should be able to do cleanly. If you don’t know how to do this read
Pro Git. Be sure to read chapter 3.1 and 3.2 fully. This is how software developers coordinate and
work together in large projects. For this course, you should always merge to maintain proper history
between yourself and the provided repository. You should never rebase in this course, and in general
you should never rebase unless you have a good reason to. It will be important to keep your code
up-to-date during this lab as the test cases may change with your help.

You can finally run: cd ssp to begin the lab.

Your task. You're going to create a process manager similar to the Python subprocess module in some
respects. Your version is going to be a C library with the following API:

void ssp_init();

int ssp_create(char *const *argv, int fd@, int fd1, int fd2);
void ssp_send_signal(int ssp_id, int signum);

int ssp_get_status(int ssp_id);

void ssp_wait();

void ssp_print();

The description of what each function should do is below:
void ssp_init()

This will always be called once before a user makes any other call to your library. You should initialize
or setup anything you need here.

int ssp_create(char *const *argv, int fd@, int fd1, int fd2)
You will create a new process in this function, that new process should eventually call execvp(argv[0],

argv). You must set file descriptors 0, 1, and 2 to match the arguments fd8, fd1, and fd2 through calls
to dup2. Afterwards you must then close all other file descriptors except for 0, 1, and 2.


https://git-scm.com/book/en/v2/

You will not rely on library users to properly manage file descriptors (and in fact they can’t since your
library calls fork). You may find some interesting file descriptors left open by VSCode if you're using
the dev container. Your experience with Lab 1 will help you close the other file descriptors, since each
process has an fd directory. As a hint: within this directory only consider files with d_type set to DT_LNK.

The execvp wrapper will re-use the current env variable, and search for the program given by argv[0]
using the PATH environment variable (this variable is a list of directories to search for executables). If
execvp fails you should immediately exit with errno set by the execvp call. Your library should record
the process ID of the newly created process, the name (you need to copy the argv[8] string, the library
user may re-use the memory for something else so you can’t rely on it), and its status.

You should record the created process and initially set the status to -1 to indicate it's running. You
should return a unique ssp_id that your library will use to refer to this created process. The IDs should
be sequential and start with 0.

void ssp_send_signal(int ssp_id, int signum)

You should send a signal signum to the process referred to by ssp_id. If the process is no longer running,
you should not return an error and instead do nothing.

int ssp_get_status(int ssp_id)
You should return the current status of the process referred to by ssp_id without blocking.
void ssp_wait()

This function should block and only return when all processes created through ssp_create terminate.
As a sanity check, all processes should have a status between 8 and 255 after this call completes.

void ssp_print()

This is a non-blocking call that outputs the PID, name, and current status of every process created
through ssp_create. This should reflect the current state of the processes, so you should query them
in this function.

You should start by printing a header, which will be PID right-justifeid with a width of 7 characters, a
space, then CMD left-justified to the width of the longest process name, a space, then STATUS. After the
header, for each process created by ssp_create you should output its pid, name, and current status.
Recall that the name is your copied argv[8] string.

status
The status of each process should match it's exit status if it exits normally. However, if the process

terminates through a signal you should set the status to be equal to the signal number plus 128. Recall
that a status of -1 means the process is currently active.



Errors. You need to check for and properly handle errors. Some errors are expected and should be
handled without additional output or exiting the process. For fatal errors, you should exit with the errno
of the first fatal error.

Become a Subreaper (20% of the grade). This task may make your implementation more complex,
or you may have to scrap your first attempt. It's advised to complete the other parts of the lab first.
However, when you're ready you should add a call to prct1(PR_SET_CHILD_SUBREAPER) in ssp_init to
become a subreaper.

A subreaper will adopt all orphan processes created by child processes. In other words, your process
will be the new parent when an orphan process gets re-parented (instead of init). It'll be your job to
call waitpid on any adopted process as soon as they terminate.

As part of being a subreaper you should record any time an adopted process terminuates. You should
record its pid and status. For its name you should simply call it "<unknown>". Add these unknown
processes to be displayed when you call ssp_print after all the processes managed directly by the
library. These processes should be output in the order they terminate.

Building. First, make sure you're in the ssp directory if you’re not already. After, run the following
commands:

meson setup build
meson compile -C build

Whenever you make changes, you can run the compile command again. You should only need to run
setup once.

Testing. You cannot execute your library directly, however you can run the test programs manually.
Please find the files in tests/*.c. You should be able to read and understand what they’re doing with
your library. You'll find the executables in build/tests/*.

You may also choose to run the test suite provided with the command:

meson test -C build

Grading. Run the ./grade.py script in the directory. This will rebuild your program, run the tests, and
give you a grade out of 100 based on your test results. Note that these test cases may not be complete,
more may be added before the due date, or there may be hidden test cases. These labs are new, so
we may need to change.

Tips. You'll want to read the documentation on some more C functions (some are light syscall wrap-
pers). Some header files you'll need to use are provided for you in the skeleton code. You may include
additional parts of the standard library. It's highly recommended to at least use the following functions:

open fdopendir readdir closedir dup?2 waitpid fork execvp malloc perror exit



Submission. Simply push your code using git push origin main (or simply git push) to submit it.
You need to create your own commits to push, you can use as many as youd like. You'll need to use
the git add and git commit commands. You may push as many commits as you want, your latest
commit that modifies the lab files counts as your submission. For submission time we will only look at
the timestamp on our server. We will never use your commit times (or file access times) as proof of
submission, only when you push your code to the course Git server.



