
Lecture 1
ECE 353: Systems Software

Overview
1.1.0

Jon Eyolfson
January 9, 2023

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

cba

http://creativecommons.org/licenses/by-sa/4.0/

Hello, I’m Jon

1

Quercus is theMain Hub

You’ll find links on Quercus for everything

We’ll primarily use Quercus for scheduling announcements and grades

Materials posted to: https://eyolfson.com/courses/ece353/

2

https://eyolfson.com/courses/ece353/

DiscussionWill Be Interactive on Discord

https://discord.gg/p5SUTrNa9P

3

https://discord.gg/p5SUTrNa9P

Code SubmissionWill Be Through GitLab

https://laforge.eecg.utoronto.ca/

4

https://laforge.eecg.utoronto.ca/

LecturesWill Be Streamedwith VODs

https://www.youtube.com/@eyolfson

5

https://www.youtube.com/@eyolfson

Lecture Attendence is Still Extremely Important, for Both of Us

Please still attend lectures if you’re not sick!

This is the easiest and most direct way to get feedback

Feel free to raise your hand or ask questions at any time if anything is unclear

6

Office Hours areWednesdays 1 PM to 2 PM

Let me know if there’s any conflict

The TAs and I will be on Discord for discussions

Office hours aren’t streamed or recorded; this is a resource only for you

7

There are 6 Labs, aMidterm, and a Final Exam

Assessment Weight Due Date
Lab 1 8% January 30
Lab 2 8% February 13
Lab 3 8% February 27
Midterm Exam 17% March 1 (tentatively)
Lab 4 8% March 13
Lab 5 8% March 27
Lab 6 8% April 10
Final Exam 35% April 18 to April 30

8

Academic Integrity Includes Not Posting on GitHub

You can study together; you cannot do labs together

Cheating hurts everyone involved

Any cheating will not be tolerated

9

The Books are Optional, and Complement Lectures

“Operating Systems: Three Easy Pieces”
by Remzi Arpaci-Dusseau and Andrea Arpaci-Dusseau

“The C Programming Language”
by Brian Kernighan and Dennis Ritchie

10

https://pages.cs.wisc.edu/~remzi/OSTEP/
http://www.cs.wisc.edu/~remzi/
http://www.cs.wisc.edu/~dusseau/
https://en.wikipedia.org/wiki/The_C_Programming_Language
https://en.wikipedia.org/wiki/Brian_Kernighan
https://en.wikipedia.org/wiki/Dennis_Ritchie

Please Provide Feedback

I want you to get the most out of this course

Let me know if you like, dislike, or want to see more of something

I’m open to suggestions!

11

“All problems in computer science can be solved by another level of indirection”

- David Wheeler

12

AnOperating System Sits between Applications and Hardware

Application

Operating System

Hardware

The primary role of an operating system is to manage and coordinate resources

13

Ubuntu and Android are Considered Different Operating Systems

Both use a Linux kernel, but they run different applications

There isn’t a clear line, especially with “Linux”

For desktop applications, you’d draw the line at the Display System

“Linux” uses Wayland, and Android uses SurfaceFlinger

14

Operating Systems Allow RunningMore than One Application

Without an operating system, a CPU starts executing code at a fixed address

You could put your application here, but it would be the only one

You would have to handle specific hardware in your application

Instead, we start executing an operating system at boot

15

Our First Abstraction is a Process

Each process contains its own set of registers, including the program counter

When starting a process, it specifies where the CPU should start executing

The operating systems has to:
• Keeps track of registers for each process
• Switch between different processes
• Decide when to switch between processes

16

WeCould Put Applications in Different Parts of Memory

Memory
0x0000000000000000

0x00000000FFFF0000

Operating System

LibreOffice

Firefox

Start

Start

Start

This isn’t very flexible

17

Virtualization Fools Something into Thinking it Has All Resources

“LibreOffice Memory”

0x0000000000080000

0x00000000FFFF0000

Start

“Firefox Memory”

0x0000000000080000

0x00000000FFFF0000

Start

18

Virtual Memory Abstracts Away Physical Memory

Each process believes it has access to all the memory

Different processes can have the same starting address

The operating system has to:
• Map virtual memory access to physical memory
• Keep track of memory usage (allocate and deallocate)
• Handle out-of-memory scenarios

19

Virtualization is a Powerful Concept

Applies to both processes and virtual memory

We can extend this to an entire machine

A single physical machine can run multiple operating systems at once

20

Concurrency is Multiple Things Happening at the Same Time

We want multiple applications running at once

We want applications to do multiple things at once

We don’t want applications isolated

We want applications and libraries to communicate

21

Concurrency is Necessary for Operating Systems

Running one application at a time isn’t a good experience

Completely isolated applications aren’t useful
The simplest applications still communicate with the terminal

The operating system has to:
• Allow multiple executions at once, safely
• Manage abstractions for different kinds of inter-process communication (IPC)
• Provide permission checking and access control

22

Finally,We Need Persistence for a Basic Operating System

We want to be able to access data between boots

A file system specifies how to organize data on a storage medium

The operating system has to:
• Store and retrieve data
• Ensure integrity of data

23

File Descriptors Abstract Both Communication and Persistence

A file descriptor is just a number identifier (per process) that you can:
• Read bytes from
• Write bytes to

The operating system can direct the bytes to whatever it represents

You could imagine it representing a file, or one side of communication

24

Code Example: 01-overview/read-four-bytes.c

We’ll have a bunch of code examples in this class

Compile the examples:

cd 01-overview
meson setup build
meson compile -C build

Execute the example:

build/read -four -bytes /usr/bin/ls

You’ll need be familar with this kind of code for the course

25

Most Kernel Code is Device Drivers

Device drivers implement the abstractions we’ll learn to the physical hardware

It involves reading manufacturer specifications, and finding bugs

Sometimes there’s inconsistencies between documentation and reality

26

AnActual Comment Linux Source (arch/x86/kernel/apm_32.c)

/*
* Check for clue free BIOS implementations who use
* the following QA technique
*
* [Write BIOS Code]<------
* | ^
* < Does it Compile >----N--
* |Y ^
* < Does it Boot Win98 >-N--
* |Y
* [Ship It]
*
* Phoenix A04 08/24/2000 is known bad (Dell Inspiron 5000e)
* Phoenix A07 09/29/2000 is known good (Dell Inspiron 5000)
*/

27

Believe It or Not, This Is “HelloWorld”

0x7F 0x45 0x4C 0x46 0x02 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x02 0x00 0xB7 0x00 0x01 0x00 0x00 0x00 0x78 0x00 0x01 0x00 0x00 0x00 0x00 0x00
0x40 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x40 0x00 0x38 0x00 0x01 0x00 0x40 0x00 0x00 0x00 0x00 0x00
0x01 0x00 0x00 0x00 0x05 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00
0xA8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xA8 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x10 0x00 0x00 0x00 0x00 0x00 0x00 0x08 0x08 0x80 0xD2 0x20 0x00 0x80 0xD2
0x81 0x13 0x80 0xD2 0x21 0x00 0xA0 0xF2 0x82 0x01 0x80 0xD2 0x01 0x00 0x00 0xD4
0xC8 0x0B 0x80 0xD2 0x00 0x00 0x80 0xD2 0x01 0x00 0x00 0xD4 0x48 0x65 0x6C 0x6C
0x6F 0x20 0x77 0x6F 0x72 0x6C 0x64 0x0A

28

There are 3Major Concepts in This Course

You’ll learn how the following applies to operating systems:
• Virtualization
• Concurrency
• Persistence

29

