
Lecture 10
ECE 353: Systems Software

Libraries
1.0.1

Jon Eyolfson
January 30, 2023

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

cba

http://creativecommons.org/licenses/by-sa/4.0/


ApplicationsMay Pass ThroughMultiple Layers of Libraries

User space
Kernel space

C Standard Library (libc)

System Daemon (udev) Display Server (Wayland)

GUI Toolkit (GTK)

NetworkManager LibreOffice Firefox

1



CABI, or Calling Convention for x86-64

System calls use registers, while C is stack based:
• Arguments pushed on the stack from right-to-left order
• rax, rcx, rdx are caller saved
• Remaining registers are callee saved
• Some arguments may be passed in registers instead of the stack

See Wikipedia for more details (there’s lots of conventions, caller and callee need to
agree)

What advantages does this give us vs system call ABI? Disadvantages?

2

https://en.wikipedia.org/wiki/X86_calling_conventions


Normal Compilation in C

main.c

util.c

foo.c

bar.c

main.o

util.o

foo.o

bar.o

executable
Compilation Linkage

Note: object files (.o) are just ELF files with code for functions

3



Static Libraries Are Included At Link Time

util.o

foo.o

bar.o

lib.aArchive

main.o

lib.a

executable
Linkage

4



Dynamic Libraries Are For Reusable Code

The C standard library is a dynamic library (.so), like any other on the system
Basically a collection of .o files containing function definitions

Multiple applications can use the same library:

Application 1 Application 2

libc.so

The operating system only loads libc.so in memory once, and shares it
The same physical page corresponds to different virtual pages in processes

5



Dynamic Libraries Are Included At Runtime

util.o

foo.o

bar.o

lib.so
Shared Linkage

main.o executable

lib.so

Linkage

Linked at Runtime

6



Useful Command Line Utilities for Dynamic Libraries

ldd <executable>
shows which dynamic libraries an executable uses

objdump -T <library>
shows the symbols (often just function names) that are in the library

You can also use objdump -d to disassemble the library

7



Static vs Dynamic Libraries

Another option is to statically link your code
Basically copies the .o files directly into the executable

The drawbacks compared to dynamic libraries:
• Statically linking prevents re-using libraries
(commonly used libraries have many duplicates)

• Any updates to a static library requires the executable to be recompiled

What are issues with dynamic libraries?

8



Dynamic Libraries Updates Can Break Executables with ABI Changes

An update to a dynamic library can easily cause an executable using it to crash

Consider the following in a dynamic library:
A struct with multiple fields corresponding to a specific data layout (C ABI)

An executable accesses the fields of the struct in the dynamic library

Now if the dynamic libraries reorders the fields
The executable uses the old offsets and is now wrong

Note: this is OK if the dynamic library never exposes the fields of a struct

9



CUses a Consistent ABI for structs

structs are laid out in memory with the fields matching the declaration order
C compilers ensure the ABI of structs are the consistent for an architecture

Consider the following structures:

Library v1:

struct point {
int y;
int x;

};

Library v2:

struct point {
int x;
int y;

};

For v1 the x field is offset by 4 bytes from the start of struct point’s base
For v2 it is offset by 0 bytes, and this difference will cause problems

10



ABI Stable Code Should Always Print “1, 2”

int main() {
struct point *p = point_create (1, 2);

printf("point (x, y) = %d, %d (using library )\n",
point_get_x(p), point_get_y(p));

struct point_v1 *p_v1 = (struct point_v1 *) p;
printf("point (x, y) = %d, %d (using v1)\n", p_v1 ->x, p_v1 ->y);

struct point_v2 *p_v2 = (struct point_v2 *) p;
printf("point (x, y) = %d, %d (using v2)\n", p_v2 ->x, p_v2 ->y);

point_destroy(p);
return 0;

}

11



Mismatched Versions of This Library Causes Unexpected Results

The definition of struct point in both libraries is different
Order of x and y change (and therefore their offsets)

Our code works correctly with either v1 or v2 of the library
The stable ABI is in point.h (it hides the struct)

If you expose a struct it becomes part of your ABI!

If the struct point was exposed we get unexpected results with v2
This would be compiled into your program if the struct was visible!

12



Try the Previous Example

It’s in 10-libraries directory in examples

Set LD_LIBRARY_PATH to build/v1 or build/v2 to simulate a library update

Run the following commands to see for yourself:

LD_LIBRARY_PATH=build/v1 build/point -example -v1
LD_LIBRARY_PATH=build/v2 build/point -example -v1

Note: you’d also have a problem if you compiled with v2 and used v1

13



Semantic VersioningMeets Developer’s Expectations

From https://semver.org/, given a version number MAJOR.MINOR.PATCH,
increment the:
• MAJOR version when you make incompatible API/ABI changes
• MINOR version when you add functionality in a backwards-compatible manner
• PATCH version when you make backwards-compatible bug fixes

14

https://semver.org/


Dynamic Libraries Allow Easier Debugging

Control dynamic linking with environment variables
LD_LIBRARY_PATH and LD_PRELOAD

Consider the following example:

#include <stdlib.h>
#include <stdio.h>

int main() {
int *x = malloc(sizeof(int ));
printf("x = %p\n", x);
free(x);
return 0;

}

15



WeCanMonitor All Allocationswith Our Own Library

Normal runs of alloc-example outputs:
x = 0x561116384260

Create liballoc-wrapper.so that outputs all malloc and free calls

Run: LD_PRELOAD=build/liballoc-wrapper.so build/alloc-example

Call to malloc (4) = 0x55c12aa40260
Call to malloc (1024) = 0x55c12aa40280
x = 0x55c12aa40260
Call to free(0 x55c12aa40260)

Interesting, we did not make 2 malloc calls

16



DetectingMemory Leaks

valgrind is another useful tool to detect memory leaks from malloc and free
Usage: valgrind <executable>

Here’s a note from the man pages regarding what we saw:

“The GNU C library (libc.so), which is used by all programs, may allocate memory
for its own uses. Usually it doesn’t bother to free that memory when the program
ends—there would be no point, since the Linux kernel reclaims all process
resources when a process exits anyway, so it would just slow things down.”

Note: this does not excuse you from not calling free!

17



Operating Systems Provide the Foundation for Libraries

We learned:
• Dynamic libraries and a comparison to static libraries

• How to manipulate the dynamic loader
• Example of issues from ABI changes without API changes

18


