
Lecture 14
ECE 353: Systems Software

Page Tables
1.2.0

Jon Eyolfson
February 8, 2023

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

cba

http://creativecommons.org/licenses/by-sa/4.0/


Multi-Level Page Tables Save Space for Sparse Allocations

 

Physical Page Number

6

A

5 4 3

U

2

W

1

V

07891063

V
R
W
X
U

A
D

- Valid
- Readable
- Writable
- Executable
- User

- Accessed
- Dirty (0 in page directory)

Virtual address Physical Address
129

L1 L0 Offset

12

PPN Offset

PPN Flags

0

1

10

Page Directory

satp

L2

PPN Flags

0

1

44 10

Page Directory

PPN Flags

0

1

511
10

Page Directory

99

EXT
9

511

511

44

44

44

D U X RG

A - Accessed
-G - Global

RSW

Reserved for supervisor software

53

Reserved

© MIT https://github.com/mit-pdos/xv6-riscv-book/
1

https://github.com/mit-pdos/xv6-riscv-book/


Page Allocation Uses A Free List

Given physical pages, the operating system maintains a free list (linked list)

The unused pages themselves contain the next pointer in the free list
Physical memory gets initialized at boot

To allocate a page, you remove it from the free list
To deallocate a page you add it back to the free list

2



Insight: Use a Page for Each Smaller Page Table

There are 512 (29) entries of 8 bytes(23) each, which is 4096 bytes

The PTE for L(N) points to the page table for L(N-1)

You follow these page tables until L0 and that contains the PPN

3



The Smaller Page Tables are Just Like Arrays

Instead of:
int page_table[512] // What’s the size of this?

or
x = page_table[2] // What’s the offset of index 2?

You have:
PTE page_table[512]

where:
sizeof(page_table) ⓧ⓪ PAGE_SIZE

and
sizeof(page_table) = number of entries * sizeof(PTE)

4



Consider Just One Additional Level

Assume our process uses just one virtual address at 0x3FFFF008
or 0b11_1111_1111_1111_1111_0000_0000_1000
or 0b111111111_111111111_000000001000

We’ll just consider a 30-bit virtual address with a page size of 4096 bytes
We would need a 2 MiB page table if we only had one (218 × 23)

Instead we have a 4 KiB L1 page table (29 × 23) and a 4 KiB L0 page table
Total of 8 KiB instead of 2 MiB

Note: worst case if we used all virtual addresses we would consume 2 MiB + 4 KiB

5



Translating 3FFFF008with 2 Page Tables

Consider the L1 table with the entry:

Index PPN
511 0x8

Consider the L0 table located at 0x8000 with the entry:

Index PPN
511 0xCAFE

The final translated physical address would be: 0xCAFE008

6


