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Multi-Level Page Tables Save Space for Sparse Allocations
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Page Allocation Uses A Free List

Given physical pages, the operating system maintains a free list (linked list)

The unused pages themselves contain the next pointer in the free list
Physical memory gets initialized at boot

To allocate a page, you remove it from the free list
To deallocate a page you add it back to the free list
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Insight: Use a Page for Each Smaller Page Table

There are 512 (29) entries of 8 bytes(23) each, which is 4096 bytes

The PTE for L(N) points to the page table for L(N-1)

You follow these page tables until L0 and that contains the PPN
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The Smaller Page Tables are Just Like Arrays

Instead of:
int page_table[512] // What’s the size of this?

or
x = page_table[2] // What’s the offset of index 2?

You have:
PTE page_table[512]

where:
sizeof(page_table) ⓧ⓪ PAGE_SIZE

and
sizeof(page_table) = number of entries * sizeof(PTE)
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Consider Just One Additional Level

Assume our process uses just one virtual address at 0x3FFFF008
or 0b11_1111_1111_1111_1111_0000_0000_1000
or 0b111111111_111111111_000000001000

We’ll just consider a 30-bit virtual address with a page size of 4096 bytes
We would need a 2 MiB page table if we only had one (218 × 23)

Instead we have a 4 KiB L1 page table (29 × 23) and a 4 KiB L0 page table
Total of 8 KiB instead of 2 MiB

Note: worst case if we used all virtual addresses we would consume 2 MiB + 4 KiB
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Translating 3FFFF008with 2 Page Tables

Consider the L1 table with the entry:

Index PPN
511 0x8

Consider the L0 table located at 0x8000 with the entry:

Index PPN
511 0xCAFE

The final translated physical address would be: 0xCAFE008
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