ECE 353: Systems Software
Lecture 2

Kernel Mode

1.0.0

Jon Eyolfson
January 11, 2023

©@®O

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/

Make Sure You Try to Login to the GitLab Server

You'll be greeted with a “Your account is pending approval” message
Just try again a bit later, and you'll be approved

Let me know your experience with Git/GitLab/GitHub
Is everyone comfortable adding and using their SSH keys?

There’s 3 Major ISAs in Use Today

ISA stands for the instruction set architecture
It's the machine code, or numbers the CPU understands

x86-64 (aka amd64): for desktops, non-Apple laptops, servers
aarché4 (aka armé4): for phones, tablets, Apple laptops

riscv (aka rvé4gc): open-source implementation, similar to ARM

We'll touch on all of them in this course

x86-64 CPUs Have “Rings” to Control Instruction Access

Hypervisor
(Ring -1)

Kernel / Supervisor
(Ring 0)

Each ring can access instructions in any of its outer rings

The Kernel of the Operating System Runs in Kernel Mode

User space

Kernel space

System Calls Transition between User and Kernel Mode

User space

read write open close stat mmap brk pipe clone fork
execve exit wait4 chdir mkdir rmdir creat mount (451 total)

init_module delete_module clock_nanosleep exit_group

Kernel space

Quick Aside: API Tells You What and ABI Tells You How

Application Programming Interface (API) abstracts the details how how to
communicate

e.g. A function takes 2 integer arguments

Application Binary Interface (ABI) specifies how to layout data and how to

concretely communicate

e.g. The same function using the C calling convention

System Call ABI for Linux AArch64

Enter the kernel with a svc instruction, using registers for arguments:
® x8 — System call number
® x8 — 15 argument
® x1— 2" argument
® x2 — 3 argument
® x3— 4" argument
® x4 — 5" argument
® x5 — 6" argument

What are the limitations of this?

Note: other registers are not used, whether they’re saved isn't important for us

We Can Represent System Calls Like Regular C Functions

However, system calls run in kernel mode and can interact with hardware

For example:

ssize_t write(int fd, const void *buf, size_t count);
(writes bytes to a file descriptor)
APl fd: A file descriptor to write bytes to
buf: An address to contiguous sequence of bytes
count: How many bytes to write from the sequence

void exit_group(int status);
(exits everything associated with the current running program)
APl status: An exit code for the program (0-255)

Let’'s Execute a 168 Byte “Hello World” on Linux AArch64

Bx7F
0x02
0x40
0x00
0x01
0x00
OxA8
0x00
0x81
0xC8
Bx6F

Bx45
0x0e
0x0e
8x0e
0x00
0x0e
0x00
ex18
8x13
0xeB
0x20

0x4C
BxB7
0x08
0x08
6x00
0x81
6x00
0x08
0x80
0x80
0x77

0x46
0x00
0x00
0x00
0x00
0x00
0x00
0x00
8xD2
0xD2
Bx6F

8x62
8x01
0x060
Bx40
0x05
0x060
0x60
0x060
0x21
0x60
8x72

0x81
0x08
0x08
0x08
0x00
0x08
0x00
0x08
0x08
0x08
8x6C

0x81
0x08
0x08
0x38
0x00
0x08
0x00
0x08
0xAB
0x80
Bx64

0x08
0x08
0x08
0x08
0x00
0x08
0x00
0x08
BxF2
8xD2
Bx0A

0x08
Bx78
0x08
8x@1
0x00
8x08
BxA8
8x088
0x82
8x@1

0x00
0x00
0x00
0x00
8x00
0x00
0x00
0x08
0x01
0x00

0xee
8xe1
0x0e
Bx40
0x00
8xe1
0x00
0x80
0x80
0x0e

0x00
0x00
0x00
0x00
0x00
0x00
0x00
8xD2
8xD2
0xD4

0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x20
0x01
0x48

0x08
0x08
0x08
0x08
6x00
0x08
6x00
0x08
0x00
0x65

0x08
0x08
0x08
0x08
0x00
0x08
0x00
0x80
0x08
0x6C

0x08
0x08
0x08
0x08
0x00
0x08
0x00
8xD2
0xD4
8x6C

ELF is the Binary Format for Unix Operating Systems

Executable and Linkable Format (ELF) is a file format

Always starts with the 4 bytes: 0x7F 0x45 Bx4C 0x46
or with ASCll encoding: @x7F 'E' 'L' 'F'

Followed by a byte signifying 32 or 64 bit architectures
then a byte signifying little or big endian

Most file formats have different starting signatures (or magic numbers)

10

Use readelf to Read ELF File Headers

Command: readelf -a <filename> (for all information)

Contains the following:
® A header containing:

® |nformation about the machine (e.g. the ISA)
® The entry point of the program

® Any program headers (required for executables)

® Any section headers (required for libraries)

Our Minimal Executable Contains a Single Program Header

Tells the kernel to load the entire executable file into memory at address 8x10000
The header is 64 bytes, and the program header is 56 bytes (120 bytes total)

The next 36 bytes are instructions, then 12 bytes for the string “Hello world\n”
Instructions start at 8x18078 (8x78 is 120)

The string starts at 8x1889C (8x9C is 156)

12

“Hello world” Needs 2 System Calls

Command: strace <filename>

This shows all the system calls our program makes:

execve("./hello_world", ["./hello_world"], Ox7ffd8489de48 /* 46 vars */) = 0
write(1, "Hello world\n", 12) =12

exit_group (@) =7

+++ exited with 8 +++

13

Instructions for “Hello world”, Using the Linux AArch64 ABI

Plug in the next 36 bytes into a disassembler, such as:

Our disassembled instructions:

mov
mov
mov

movk x1, #8x1,

mov
svC
mov
mov
svC

x8, #0x40
x0, #0x1
x1, #0x9C

x2, #0x06C
#0x0
x8, #Bx5E
x0, #0x8
#0x0

/1
/1
/1
1sl #16 //
/1

/1
11

#o4

#1

#156
#0x10000
#12

#94
#0

https://onlinedisassembler.com/

Finishing Up “Hello world” Example

The remaining 12 bytes is the “Hello world” string itself, ASCIl encoded:
Bx48 Bx65 Bx6C Bx6C Ox6F Ox28 Bx77 Bx6F Bx72 Bx6C Bx64 Bx0A

Low level ASCII tip: bit 5 is 8/1 for upper case/lower case (values differ by 32)
This accounts for every single byte of our 168 byte program, let’s see what C does...

Can you already spot a difference between strings in our example compared to C?

15

System Calls for “Hello world” in C, Finding Standard Library

execve("./hello_world_c", ["./hello_world_c"], 8x7ffcb3444f60 /* 46 vars */) =8
brk (NULL) = Bx5636ah9%eabbn

openat (AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3

fstat(3, {st_mode=S_IFREG|B644, st_size=149337, ...}) =0

mmap (NULL, 149337, PROT_READ, MAP_PRIVATE, 3, 8) = 8x7f4d43846000

close(3) =0

openat (AT_FDCWD, "/usr/lib/libc.so.6", O_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\2\7\7\3\@\e\e\e\e\e\e\6\3\e>\e\1\e\e\eeeec"..., 832) = 832
lseek(3, 792, SEEK_SET) = 792

read (3, "\4\8\8\8\24\0\6\0\3\6\6\0GNU\B\2081\336\t\36\251c\324"..., 68) = 68

fstat (3, {st_mode=S_IFREG|B755, st_size=2136846, ...}) =8
mmap (NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 8)

= Ox7f4d43844000

lseek (3, 792, SEEK_SET) = 792

read(3, "\4\8\8\8124\0\61\0\3\0\8\0GNU\B\201\336\t\36\251¢c\324"..., 68) = 68
lseek (3, 864, SEEK_SET) - 864

read (3, "\4\8\0\0\20\06\06\8\5\0\0\0GNU\B\2\6\0\30808\4\B\0\B\3\0\0", 32) = 32

System Calls for “Hello world” in C, Loading Standard Library

mmap (NULL, 1848896, PROT_READ, MAP_PRIVATE|MAP_DENYWRITE, 3, 8) = Bx7f4d43680008
mprotect (Bx7f4d436a2000, 1671168, PROT_NONE) = 8
mmap (0x7f4d436a2000, 1355776, PROT_READ|PROT_EXEC,
MAP_PRIVATE |MAP_FIXED|MAP_DENYWRITE, 3, 0x228808) = Ox7f4d436a2000
mmap (0x7f4d437edB00, 311296, PROT_READ,

MAP_PRIVATE |MAP_FIXED|MAP_DENYWRITE, 3, 0x16d888) = 8x7f4d437ed600
mmap (8x7f4d4383a666, 24576, PROT_READ|PROT_WRITE,
MAP_PRIVATE |MAP_FIXED|MAP_DENYWRITE, 3, 0x1b9888) = 8x7f4d4383a000

mmap (Bx7f4d43840006, 13888, PROT_READ|PROT_WRITE,
MAP_PRIVATE |[MAP_FIXED|MAP_ANONYMOUS, -1, 8) = 0x7f4d43840000
close(3) =0
arch_prctl (ARCH_SET_FS, Bx7f4d43845560) = @
mprotect (8x7f4d4383a600, 16384, PROT_READ) = 0
mprotect (8x5636a9ahdeed, 4696, PROT_READ) = 8
mprotect (8x7f4d43894600, 4696, PROT_READ) = 8
munmap (8x7f4d43846008, 149337) =0
fstat(1, {st_mode=S_IFCHR|B8628, st_rdev=makedev(06x88, 08x1), ...}) =8

System Calls for “Hello world” in C, Setting Up Heap and Printing

brk (NULL) = Bx5636abh%eabbo
brk (8x5636ababh0B0) = Bx5636ababh0oo
write(1, "Hello world\n", 12) = 12
exit_group(0) =

+++ exited with @ +++

The C version of “Hello world” ends with the exact same system calls we made

18

You Can Think of the Kernel as a Long Running Program

Writing kernel code is more like writing library code (there’s no main)
The kernel lets you load code (called modules)

Your code executes on-demand
e.g. when it’s loaded manually, new hardware, or accessing a certain file

If you write a kernel module, you can execute privileged instructions
and access any kernel data, so you could do anything

19

A Monolithic Kernel Runs Operating System Services in Kernel Mode

User space
Kernel space

Virtual Memory

Process Scheduling

IPC

File Systems

Device Drivers

20

A Microkernel Runs the Minimum Amount of Services in Kernel Mode

File Systems

Device Drivers

Advanced IPC

User space

Kernel space

Virtual Memory

Process Scheduling

Basic IPC

21

Other Types of Kernels

“Hybrid” kernels are between monolithic and microkernels
Emulation services to user mode (Windows)
Device drivers to user mode (macOS)

Nanokernels and picokernels
Move even more into user mode than traditional microkernels

There’s many different lines you can draw with different trade-offs

22

Kernel Interfaces Operate Between CPU Mode Boundaries

The lessons from the lecture:

® Code running in kernel mode is part of your kernel
® System calls are the interface between user and kernel mode
® Every program must use this interface!
® File format and instructions to define a simple “Hello world” (in 168 bytes)

® Difference between APl and ABI
® How to explore system calls

Different kernel architectures shift how much code runs in kernel mode

23

