
Lecture 24
ECE 353: Systems Software

Second Review
1.0.1

Jon Eyolfson
March 9, 2023

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

cba

http://creativecommons.org/licenses/by-sa/4.0/


Page Tables Translate Virtual to Physical Addresses

The MMU is the hardware that uses page tables, which may:
• Be a single large table (wasteful, even for 32-bit machines)
• Use the kernel allocated pages from a free list
• Be a multi-level to save space for sparse allocations
• Use a TLB to speed up memory accesses

1



Threads Enable Concurrency

We explored threads, and related them to something we already know (processes)
• Threads are lighter weight, and share memory by default
• Each process can have multiple threads (but just one at the start)

2



Both Processes and (Kernel) Threads Enable Parallelization

• Each process can have multiple (kernel) threads
• Most implementations use one-to-one user-to-kernel thread mapping
• The operating system has to manage what happens during a fork, or signals
• We now have synchronization issues

3



WeWant Critical Sections to Protect Against Data Races

We should know what data races are, and how to prevent them:
• Mutex or spinlocks are the most straightforward locks
• We need hardware support to implement locks
• We need some kernel support for wake up notifications
• If we know we have a lot of readers, we should use a read-write lock

4



WeUsed Semaphores to Ensure Proper Order

Previously we ensured mutual exclusion, now we can ensure order
• Semaphores contain an initial value you choose
• You can increment the value using post
• You can decrement the value using wait (it blocks if the current value is 0)
• You still need to be prevent data races

5



WeExploredMore Advanced Locking

We have another tool to ensure order
• Condition variables are clearer for complex condition signaling
• Locking granularity matters
• You must prevent deadlocks

6



A Forking Question

Consider the following code:

int main() {
pid_t first = fork ();
pid_t second = fork ();
pid_t third = fork ();
printf("first=%d second =%d third =%d\n", first , second , third);

}

What is one reasonable set of outputs (assume the initial process is pid 2)?

Are the outputs in any specific order?

What do the relationships between processes look like?

7



ucontextQuestion

8


