ECE 353: Systems Software
Lecture 7

Process Practice

1.1.0

Jon Eyolfson
January 23, 2023

©@®O

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License


http://creativecommons.org/licenses/by-sa/4.0/

Trying to Get a Better Midterm Room

Changing to Feburary 28th (Tuesday)
Asked for better rooms without arm tables

Let me know any major issues or if we need to coordinate with other courses



On aRISC-V CPU, There's 3 Terms for “Interrupts”

Interrupt
Triggered by external hardware,
handled by the kernel (needs to respond quickly)

Exception
Triggered by an instruction (divide by zero, illegal memory access),
default handler is the kernel (calling process suspended),
the process can optionally handle some of these themselves

Trap
Transfer of control to a trap handler caused by either
an exception or an interrupt (code that runs)

A system call would be a requested trap



A New APl —pipe

int pipe(int pipefd[2]);
Returns 8 on success, and -1 on failure (and sets errno)

pipe forms a one-way communication channel using two file descriptors
pipefd[8] is the read end of the pipe
pipefd[1] is the write end of the pipe

You can think of it as a kernel managed buffer
Any data written to one end can be read on the other end



Aside: Using & in Your Shell

If you use & at the end of your command, your shell will start that process and return
e.g. sleep 1 &

It outputs the pid and lets you know when it’s finished
The | character creates a pipe between two processes

The sneaky Bash fork bomb is: : (){ :|:& };:
Do not run this command



Let's See the Example

See: B87-process-practice/pipes.c
If we remove the call to write in the parent, the child never exits

What happens to the child?



We Explored Basic IPC in an Operating System

Some basic IPC includes:
® read and write through file descriptors (could be a regular file)
® Redirecting file descriptors for communcation

® Signals

Signals are like interrupts for user processes
The kernel has to handle all 3 kinds of “interrupts”



Final 2022 Question 1

For each program shown below, state whether it will produce the same output each
time it is run, or whether it may produce different outputs when run multiple times.
Explain why the program behaves like this.

int main() {
int i = 4;
while (i !'= 8) {
int pid = fork();
if (pid == ) {
i--;
}
else {
printf("%d\n", i);
exit(8);
}
}
return 0;

}



Final 2022 Question 2
Same as the previous question, except now there’s a waitpid

int main() {
int i = 4;
while (i !'= 8) {
int pid = fork();
if (pid == ) {
i--;
}
else {
waitpid(pid, NULL, 0);
printf("%d\n", 1i);
exit(8);
}
}
return 0;

}



