
Lecture 9
ECE 353: Systems Software

Advanced Scheduling
1.0.0

Jon Eyolfson
January 26, 2023

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

cba

http://creativecommons.org/licenses/by-sa/4.0/


WeCould Add Priorities

We may favor some processes over others
Assign each process a priority

Run higher priority processes first, round-robin processes of equal priority
Can be preemptive or non-preemptive

1



Priorities Can Be Assigned an Integer

We can pick a lower, or higher number, to mean high priority
In Linux -20 is the highest priority, 19 is the lowest

We may lead processes to starvation if there’s a lot of higher priority processes

One solution is to have the OS dynamically change the priority
Older processes that haven’t been executed in a long time increase priority

2



Priority Inversion is a New Issue

We can accidentally change the priority of a low priority process to a high one
This is caused by dependencies, e.g. a high priority depends a low priority

One solution is priority inheritance
Inherit the highest priority of the waiting processes
Chain together multiple inheritances if needed
Revert back to the original priority after dependency

3



A Foregound Process Can Recieve User Input, Background Can Not

Unix background process when: process group ID differs from its terminal group ID
You do not need to know this specific definition

The idea is to separate processes that users interact with:
Foreground processes are interactable and need good response time
Background processes may not need good response time, just throughput

4



WeCan UseMultiple Queues for Other Purposes

We could create different queues for foreground and background processes:
Foreground uses RR
Background uses FCFS

Now we have to schedule between queues!
RR between the queues
Use a priority for each queue

5



Scheduling Can Get Complicated

There’s no “right answer”, only trade-offs

We haven’t talked about multiprocessor scheduling yet

We’ll assume symmetric multiprocessing (SMP)
All CPUs are connected to the same physical memory
The CPUs have their own private cache (at least the lowest levels)

6



One Approach is to Use the Same Scheduling for All CPUs

There’s still only one scheduler
It just keeps adding processes while there’s available CPUs

Advantages
Good CPU utilization
Fair to all processes

Disadvantages
Not scalable (everything blocks on global scheduler)
Poor cache locality

This was the approach in Linux 2.4

7



WeCan Create Per-CPU Schedulers

When there’s a new process, assign it to a CPU
One strategy is to assign it to the CPU with the lowest number of processes

Advantages
Easy to implement
Scalable (there’s no blocking on a resource)
Good cache locality

Disadvantages
Load imbalance

Some CPUs may have less processes, or less intensive ones

8



WeCan Compromise between Global and Per-CPU

Keep a global scheduler that can rebalance per-CPU queues
If a CPU is idle, take a process from another CPU (work stealing)

You may want more control over which processes can switch
Some may be more sensitive to caches

Use processor affinity
The preference of a process to be scheduled on the same core

This is a simplified version of the O(1) scheduler in Linux 2.6

9



Another Strategy is “Gang” Scheduling

Multiple processes may need to be scheduled simultaneously

The scheduler on each CPU cannot be completely independent

“Gang Scheduling” (Coscheduling)
Allows you to run a set of processes simultaneously (acting as a unit)

This requires a global context-switch across all CPUs

10



Real-Time Scheduling is Yet Another Problem

Real-time means there are time constraints, either for a deadline or rate
e.g. audio, autopilot

A hard real-time system
Required to guarantee a task completes within a certain amount of time

A soft real-time system
Critical processes have a higher priority and the deadline is met in practice

Linux is an example of soft real-time

11



Linux Also Implements FCFS and RR Scheduling

You can search the source tree: FCFS (SCHED_FIFO) and RR (SCHED_RR)

Use a multilevel queue scheduler for processes with the same priority
Also let the OS dynamically adjust the priority

Soft real-time processes:
Always schedule the highest priority processes first

Normal processes:
Adjust the priority based on aging

12



Real-Time Processes Are Always Prioritized

The soft real-time scheduling policy will either be SCHED_FIFO or SCHED_RR
There are 100 static priority levels (0—99)

Normal scheduling policies apply to the other processes (SCHED_NORMAL)
By default the priority is 0
Priority ranges from [−20, 19]

Processes can change their own priorities with system calls:
nice, sched_setscheduler

13



Linux Scheduler Evolution

2.4—2.6, a O(N) global queue
Simple, but poor performance with multiprocessors and many processes

2.6—2.6.22, a per-CPU run queue, O(1) scheduler
Complex to get right, interactivity had issues
No guarantee of fairness

2.6.23—Present, the completely fair scheduler (CFS)
Fair, and allows for good interactivity

14



TheO(1) Scheduler Has IssueswithModern Processes

Foreground and background processes are a good division
Easier with a terminal, less so with GUI processes

Now the kernel has to detect interactive processes with heuristics
Processes that sleep a lot may be more interactive

This is ad hoc, and could be unfair

How would we introduce fairness for different priority processes?
Use different size time slices
The higher the priority, the larger the time slice

There are also situations where this ad hoc solution could be unfair

15



Ideal Fair Scheduling

Assume you have an infinitely small time slice
If you have n processes, each runs at 1n rate

1 Process

3 Processes

CPU usage is divided equally among every process

16



Example IFS Scheduling
Consider the following processes:

Process Arrival Time Burst Time
P1 0 8
P2 0 4
P3 0 16
P4 0 4

Assume that each vertical slice can execute 4 time units.
Each box represents the time units spend executing

P1

P2

P3

P4

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

6

6

8

8 12 16

0 16 24 32

17



IFS is the Fairest but Impractical Policy

This policy is fair, every process gets an equal amount of CPU time
Boosts interactivity, has the ideal response time

However, this would perform way too many context switches

You have to constantly scan all processes, which is O(N)

18



Completely Fair Scheduler (CFS)

For each runnable process, assign it a “virtual runtime”
At each scheduling point where the process runs for time t

Increase the virtual runtime by t× weight (based on priority)

The virtual runtime monotonically increases
Scheduler selects the process based on the lowest virtual runtime

Compute its dynamic time slice based on the IFS

Allow the process to run, when the time slice ends repeat the process

19



CFS is Implementedwith Red-Black Trees

A red-black tree is a self-balancing binary search tree
Keyed by virtual runtime

O(lgN) insert, delete, update
O(1) find minimum

The implementation uses a red-black tree with nanosecond granularity
Doesn’t need to guess the interactivity of a process

CFS tends to favour I/O bound processes by default
Small CPU bursts translate to a low virtual runtime

It will get a larger time slice, in order to catch up to the ideal

20



Scheduling Gets EvenMore Complex

There are more solutions, and more issues:
• Introducing priority also introduces priority inversion
• Some processes need good interactivity, others not so much
• Multiprocessors may require per-CPU queues
• Real-time requires predictability
• Completely Fair Scheduler (CFS) tries to model the ideal fairness

21


