
Virtual Memory

2024 Winter ECE 353 Systems Software
Jon Eyolfson

Lecture 11
2.0.1

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/


HowShouldWe Implement VirtualMapping?

What are your ideas for mapping a process’s virtual memory to physical
memory?

1



VirtualMemoryChecklist

□ Multiple processes must be able to co-exist
□ Processes are not aware they are sharing physical memory
□ Processes cannot access each others data (unless allowed explicitly)
□ Performance close to using physical memory
□ Limit the amount of fragmentation (wasted memory)

2



Remember ThatMemory is ByteAddressable

The smallest unit you can use to address memory is one byte

You can read or write one byte at a time at minimum

Each “addresss” is like an index of an array

3



Segmentation or Segments are CoarseGrained

Divide the virtual address space into segments for: code, data, stack, and
heap
Note: this looks like an ELF file, large sections of memory with permissions

Each segment is a variable size, and can be dynamically resized
This is an old legacy technique that’s no longer used

Segments can be large and very costly to relocate
It also leads to fragmentation (gaps of unused memory)

No longer used in modern operating systems

4



Segmentation Details

Each segment contains a: base, limit, and permissions
You get a physical address by using: segment selector:offset

The MMU checks that your offset is within the limit (size)
If it is, it calculates base + offset, and does permission checks
Otherwise, it’s a segmentation fault

For example 0x10xFF with segment 0x1 base = 0x2000, limit = 0x1FF
Translates to 0x20FF

Note: Linux sets every base to 0, and limit to the maximum amount

5



First Insight: DivideMemory into Fixed-SizedChunks

6



MemoryManagement Unit MMU

Maps virtual address to physical address
Also checks permissions

One technique is to divide memory up into fixed-size pages (typically 4096
bytes)
A page in virtual memory is called a page
A page in physical memory is called a frame

7



YouTypically DoNot UseAll 64Virtual Address Bits

CPUs may have different levels of virtual addresses you can use
Implementation ideas are the same

We’ll assume a 39 bit virtual address space used by RISCV and other
architectures
Allows for 512 GiB of addressable memory (called Sv39

Implemented with a page table indexed by Virtual Page Number VPN
Looks up the Physical Page Number PPN

8



The Page Table TranslatesVirtual to Physical Addresses

9



The Page Table Entry PTE Also Stores Flags in the Lower
Bits

10



TheKernel Handles TranslatingVirtual Addresses

Considering the following page table:

VPN PPN
0x0 0x1
0x1 0x4
0x2 0x3
0x3 0x7

We would get the following virtual→ physical address translations:

0x0AB0 → 0x1AB0
0x1FA0 → 0x4FA0
0x2884 → 0x3884
0x32D0 → 0x72D0

11



Page Translation Example Problem

Assume you have a 8-bit virtual address, 10-bit physical address
and each page is 64 bytes

• How many virtual pages are there?

28
26 = 4

• How many physical pages are there?

210
26 = 16

• How many entries are in the page table?

4

• Given the page table is [0x2, 0x5, 0x1, 0x8]
what’s the physical address of 0xF1?

0x231

12



Page Translation Example Problem

Assume you have a 8-bit virtual address, 10-bit physical address
and each page is 64 bytes

• How many virtual pages are there? 28
26 = 4

• How many physical pages are there? 210
26 = 16

• How many entries are in the page table? 4
• Given the page table is [0x2, 0x5, 0x1, 0x8]

what’s the physical address of 0xF1?
0x231

12



Each ProcessGets Its OwnPage Table

When you fork a process, it will copy the page table from the parent
Turn off the write permission so the kernel can implement copy-on-write

The problem is there are 227 entries in the page table, each one is 8 bytes
This means the page table would be 1 GiB

Note that RISCV translates a 39-bit virtual to a 56-bit physical address
It has 10 bits to spare in the PTE and could expand
Page size is 4096 bytes (size of offset field)

13



YouMayBe Thinking That Seems LikeA Lot ofWork

In the “Subprocess” lecture, we’re doing a fork followed by exec
why do we need to copy the page tables?

We don’t! There’s a system call for that — vfork
vfork shares all memory with the parent
It’s undefined behavior to modify anything

Only used in very performance sensitive programs

14



WeUse Pages forMemory Translation

Divide memory into blocks, so we only have to translate once per block

Use page tables (array of PTEs) to access the PPN (and flags)

New problem: these page tables are always huge!

15


