Semaphores

2024 Winter ECE 353: Systems Software Lecture 23
Jon Eyolfson 2.0.0

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/

Locks Ensure Mutual Exclusion

Only one thread at a time can be between the lock and unlock calls
It does not help you ensure ordering between threads

How would we ensure an ordering between two threads?

Problem: Make One Thread Always Print First
Thread 1 (print_first) Thread 2 (print_second)
printf("This is first\n"); printf("I'm going second\n");
Try executing ./ordered-print and see what happens
Recall: printf is thread safe, which you may need to ensure

Try executing ./safe-print which (oddly) prints using multiple system calls
Practice: ensure ./safe-print behaves the same as ./ordered-print

Semaphores are Used for Signaling

Semaphores have a value that's shared between threads (optionally
processes)
Think of value as an integer that is always > 0

It has two fundamental operations wait and post
wait decrements the value atomically
post increments the value atomically

If wait will not return until the value is greater than 0

You can initially set value to whatever you want
That number of wait calls may occur without any post calls

Semaphore APl is Similar to pthread Locks

#include <semaphore.h>

int (sem_t *sem, int pshared, unsigned int value)
int sem_destroy(sem_t *sem);

int (sem_t *sem);
int (sem_t *sem);
int (sem_t *sem);

All functions return O on success

The pshared argument is a boolean, you can set it to 1 for IPC
For IPC the semaphore needs to be in shared memory

Problem: Make One Thread Always Print First

See ordered-print.c for the full code
Note: return statements are removed for space

void* (void* arg) {
printf("This is first\n");
}

void* (void* arg) {
printf("I'm going second\n");
}

int (int argc, char *argv[]) {
}

This Always Executes print_first Then print_second

static sem_t sem;

void* (void* arg) {
printf("This is first\n");
sem_post(&sem);

void* (void* arg) {
sem_wait(&sem);
printf("I'm going second\n");
}

int (int argc, char *argv[])
{

sem_init(&sem, 08, 0);

No Matter Which Thread Executes First, We Get the Same
Order
The value is initially O

Assume print_second executes first
It executes sem_wait, which is O, and doesn't continue

print_first doesn't have to wait, it prints first before it increments the value
print_second can then execute its print statement

What happens if we initialized the value to 1?

We Can Use a Semaphore as a Mutex

How?

Using a Semaphore as a Mutex, Note the value

static sem_t sem;
static int counter = 0;

void* (void* arg) {
for (int i = 08; i < 100; ++1i) {
sem_wait(&sem);
++counter;
sem_post(&sem);

}

int (int argc, char *argv[]) {
sem_init(&sem, 8, 1);

printf("counter = %i\n", counter);

}

Can We Come Up with a Solution for
a Producer/Consumer Problem?

Assume you have a circular buffer (each slot is either empty or filled):

M I
L e | 1 | | | | [n-1]

| |

Producer Consumer

The producer should write to the buffer (if the buffer is not full)
The consumer should read from the buffer (if the buffer is not empty)

All consumers share an index and all producers share an index
In both cases the index is initially O and increases sequentially

18

Problem 1: Ensure Producers Never Overwrite Filled Slots

static uint32_t buffer_size;

void 0O {
sem_init(&empty_slots, 6,);
}
void 0O {
while () 1
fill_slot();
}
}
void 0 {
while () 1
empty_slot();
}
}

I

Use a Semaphore to Track the Number of Empty Slots

void 0O {
sem_init(&empty_slots, 0, buffer_size);
}
void O {
while () {

sem_wait(&empty_slots);
fill_slot();
}
}
void O {
while () {
empty_slot();
sem_post(&empty_slots);

} What is our next problem?

12

Problem 2: Ensure Consumers Never Consume Empty Slots

void 01
sem_init(&empty_slots, 6, buffer_size);
sem_init(&filled_slots, 8,);

}

void (O { while () {

sem_wait(&empty_slots);
fill_slot();

b}

void O { while () {
empty_slot();
sem_post(&empty_slots);

3}

Two Semaphores Ensure Proper Order for Producers and
Consumers

void O {
sem_init(&empty_slots, 6, buffer_size);
sem_init(&filled_slots, 0, 0);

}

void O { while () {

sem_wait(&empty_slots);
fill_slot();
sem_post(&filled_slots);

}}

void (O { while () {
sem_wait(&filled_slots);
empty_slot();
sem_post(&empty_slots);

3}

What Happens If We Initialize Both Semaphore Values to 0?

void 01
sem_init(&empty_slots, 6, 0);
sem_init(&filled_slots, 8, 0);

}

void () { while () {

sem_wait(&empty_slots);
fill_slot();
sem_post(&filled_slots);

1}

void (O { while () {
sem_wait(&filled_slots);
empty_slot();
sem_post(&empty_slots);

3}

We Used Semaphores to Ensure Proper Order

Previously we ensured mutual exclusion, how we can ensure order

e Semaphores contain an initial value you choose

® You can increment the value using post

* You can decrement the value using wait (it blocks if the current value is 0)
You still need to be prevent data races

16

