
Process Practice

2024 Winter ECE 353 Systems Software
Jon Eyolfson

Lecture 7
2.0.0

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/


ATeachingOperating System

https://github.com/mit-pdos/xv6-riscv
Used in MIT graduate OS courses, it is a full OS you can run on the VM
You’ll run it as a VM using QEmu (yes, a VM in a VM

It’s a re-implementation of Unix version 6 for RISCV in C

1

https://github.com/mit-pdos/xv6-riscv


Uniprogramming is for Old Batch ProcessingOSs

Uniprogramming: only one process running at a time
Two processes are not parallel and not concurrent, no matter what

Multiprogramming: allow multiple processes
Two processes can run in parallel or concurrently

Modern operating systems try to run everything in parallel and concurrently

2



The Scheduler DecidesWhenTo Switch

To create a process, the operating system has to at least load it into memory

When it’s waiting, the scheduler (coming later) decides when it’s running

We’re going to first focus on the mechanics of switching processes

3



TheCore Scheduling LoopChanges Running Processes

1. Pause the currently running process
2. Save its state, so you can restore it later
3. Get the next process to run from the scheduler
4. Load the next process’ state and let that run

4



WeCan Let Processes Themselves, or theOperating System
Pause

Cooperative multitasking
The processes use a system call to tell the operating system to pause it

True multitasking
The operating system retains control and pauses processes

For true multitasking the operating system can:
• Give processes set time slices
• Wake up periodically using interrupts to do scheduling

5



Swapping Processes is called Context Switching

We’ve said that at minimum we’d have to save all the current registers
We have to save all the values, using the same CPU as we’re trying to save

There’s hardware support for saving state, however you may not want to
save everything

Context switching is pure overhead, we want it to be as fast as possible

Usually there’s a combination of hardware and software to save as little as
possible

6



ANewAPI— pipe
int pipe(int pipefd[2]);
Returns 0 on success, and -1 on failure (and sets errno)
pipe forms a one-way communication channel using two file descriptors

pipefd[0] is the read end of the pipe
pipefd[1] is the write end of the pipe

You can think of it as a kernel managed buffer
Any data written to one end can be read on the other end

7



Aside: Using & inYour Shell

If you use & at the end of your command, your shell will start that process
and return
e.g. sleep 1 &

It outputs the pid and lets you know when it’s finished

The | character creates a pipe between two processes
The sneaky Bash fork bomb is: :(){ :|:& };:
Do not run this command

8



Let’s See the Example

See: 07-process-practice/pipes.c
If we remove the call to write in the parent, the child never exits
What happens to the child?

9



Final 2022Question 1

For each program shown below, state whether it will produce the same
output each time it is run, or whether it may produce different outputs when
run multiple times. Explain why the program behaves like this.

int main() {
int i = 4;
while (i != 0) {
int pid = fork();
if (pid == 0) {
i--;

}
else {
printf("%d\n", i);
exit(0);

}
}
return 0;

}
10



Final 2022Question 2

Same as the previous question, except now there’s a waitpid
int main() {

int i = 4;
while (i != 0) {
int pid = fork();
if (pid == 0) {
i--;

}
else {
waitpid(pid, NULL, 0);
printf("%d\n", i);
exit(0);

}
}
return 0;

}
11


