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Functions

int fork();

Creates a new process that’s a clone of the currently running process. In the original process, it

returns the process ID (pid) of the newly created child process. In the child process it returns 0.

int execlp(const char *file, const char *arg, ...);

Replaces the current process with a new program specified by file. The new process is given the

command-line arguments specified by arg and any additional arguments. Returns only if there is

an error.

int dup2(int oldfd, int newfd);

Duplicates the file descriptor oldfd to newfd. If newfd is already open, it is first closed. Returns the

new file descriptor on success.

int waitpid(pid_t pid, int *status, int options);

Waits for a specific child process (pid) to change state. The state change is stored in status. The

options argument can modify the behavior of waitpid, use 0 for the defaults (blocking). Returns

the pid of the child process on success.

int pipe(int pipefd[2]);

Creates a unidirectional data channel. pipefd[0] is set up for reading, and pipefd[1] is set up for

writing. Returns 0 on success.

void exit(int status);

Terminates the calling process with an exit status of status.

ssize_t write(int fd, const void *buf, size_t count);

Writes count bytes from buf to the file or device associated with fd. Returns the number of bytes

written.

ssize_t read(int fd, void *buf, size_t count);

Reads up to count bytes from the file or socket associated with fd into buf. Returns the number of

bytes read.

int pthread_create(pthread_t *thread,
const pthread_attr_t *attr,
void *(*start_routine)(void *),
void *arg);

Creates a new thread with attributes specified by attr. The new thread starts execution by invok-

ing start_routine with arg as its argument. Returns 0 on success.

void pthread_exit(void *retval);

Terminates the calling thread, returning retval to any joining thread.

int pthread_join(pthread_t thread, void **retval);

Waits for the thread specified by thread to terminate. The thread’s return value is stored in retval.

Returns 0 on success.

int pthread_detach(pthread_t thread);

Detaches the specified thread, so that its resources can be reclaimed immediately upon termina-

tion. Returns 0 on success.



int pthread_mutex_lock(pthread_mutex_t *mutex);

Locks the specified mutex. If the mutex is already locked, the calling thread is blocked until the

mutex becomes available. Returns 0 on success.

int pthread_mutex_trylock(pthread_mutex_t *mutex);

Attempts to lock the specified mutex. The function returns immediately, regardless of the mutex

state. Returns 0 if the lock was acquired successfully, and a non-zero error code if it was not

(e.g., already locked).

int pthread_mutex_unlock(pthread_mutex_t *mutex);

Unlocks the specified mutex. The mutex must be locked by the calling thread. Returns 0 on

success.

int sem_init(sem_t *sem, int pshared, unsigned int value);

Initializes a semaphore. The pshared argument determines whether the semaphore is shared be-

tween processes (pshared = 1) or only within a single process (pshared = 0). The value argument

sets the initial count of the semaphore. Returns 0 on success and a non-zero error code on failure.

int sem_wait(sem_t *sem);

Decreases the semaphore count. If the semaphore’s value is zero, the calling process is blocked

until the semaphore value is greater than zero. Returns 0 on success.

int sem_post(sem_t *sem);

Increases the semaphore count. If there are any processes or threads waiting on the semaphore,

this operation wakes one of them. Returns 0 on success.

int sem_trywait(sem_t *sem);

Similar to sem_wait, but returns immediately if the decrement cannot be immediately performed

(i.e., the semaphore value is zero). Returns 0 if the semaphore was successfully decremented,

otherwise returns a non-zero error code.

int pthread_cond_signal(pthread_cond_t *cond);

Unblocks at least one of the threads that are blocked on the specified condition variable cond.

Returns 0 on success.

int pthread_cond_broadcast(pthread_cond_t *cond);

Unblocks all threads currently blocked on the specified condition variable cond. Returns 0 on

success.

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);

Blocks the calling thread on the condition variable cond. The thread remains blocked until another

thread signals cond with pthread_cond_signal or pthread_cond_broadcast. The mutex is assumed to

be locked by the calling thread on entrance to pthread_cond_wait. Before returning to the calling

thread, pthread_cond_wait re-acquires mutex. Returns 0 on success.

pid_t getpid(void);

Returns the process ID (PID) of the calling process. This value can be used to uniquely identify

the process within the system.

int sched_yield(void);

Causes the calling thread to relinquish the CPU. The thread is moved to the end of the queue and

a new thread gets to run. Returns 0 on success.



Short Answer (20 marks total)

Q1 (2 marks). Describe a way to reduce the number of system calls in your application.

Use buffering to group multiple operations (e.g., writes) into a single system call. For example,

writing to a memory buffer and flushing it with one write().

Q2 (2 marks). What happens to a process if it calls read on a pipe that has no data and no writers?

The process receives EOF (read returns 0) because there is no more data possible.

Q3(2marks). Name two differences between one-to-onemapped threads (kernel) andmany-to-onemapped

threads (user).

Kernel threads are scheduled by theOS, while user-level threads are scheduled by a library. Kernel

threads can run in parallel on multicore systems; user threads cannot unless mapped to kernel

threads.

Q4 (2 marks). What is priority inversion, and how can it be avoided?

Priority inversion happens when a low-priority process holds a resource needed by a high-priority

process. It can be avoided using priority inheritance, which temporarily boosts the low-priority

processes’ priority.

Q5 (2 marks). Why does RAID 0 offer no fault tolerance, and what is its primary benefit?

RAID 0 stripes data across multiple disks without any redundancy. If one disk fails, all data is lost.

Its primary benefit is increased performance due to parallel access to multiple disks.



Q6 (2 marks). Name 2 things stored in an inode itself.

Metadata such as file size, ownership, permissions, timestamps, link count, and pointers to data

blocks.

Q7 (2 marks). What does it mean for a file system to be consistent after a crash?

It means that metadata and file contents are in a valid state, without incorrect bitmaps, orphaned

blocks or incorrect inodes.

Q8 (2 marks). Why is a container not a virtual machine?

A container shares the host OS kernel (or the same single VM kernel), while a VM emulates an

entire OS including the kernel.

Q9 (4 marks). In a buddy allocator managing a single 1024 byte free block initially, what happens when an

allocation request for 200 bytes is received? Describe the splitting behavior and resulting free list state.

The allocator would round the allocation to the nearest power of 2, which is 256 bytes. It splits

larger blocks recursively: 1024 to 512 to 256. The 256 byte block is allocated, and the remaining

512 byte and 256 byte buddies are added to their respective free lists.



Processes (20 marks total)

Consider the following code, assuming that all fork() system calls are always successful, running under

process ID (pid) 100:

1 int main(void) {
2 int x = 1;
3 int pid = fork();
4 fork();
5 if (pid > 0) {
6 ++x;
7 waitpid(pid, NULL, 0);
8 }
9 else {

10 ++x;
11 pid = fork();
12 if (pid > 0) {
13 ++x;
14 waitpid(pid, NULL, 0);
15 }
16 printf("x: %d\n", x);
17 }
18 return 0;
19 }

Q10 (5 marks). Draw the process tree of parent/child relationships, showing the process IDs they will likely

get.

PID 100

PID 101

PID 103

PID 105

PID 104

PID 102

Q11 (5 marks). Provide all possible sequence of outputs of printf calls from the provided code after all

processes terminate (ignore cases where different processes print the same thing in different orders).

x: 2
x: 2
x: 3
x: 3

and

x: 2
x: 3
x: 2
x: 3



Q12 (4 marks). Using the process IDs from your process tree, describe a situation where a child process

becomes a zombie after its parent terminates. If this is not possible, explain why.

Process 102 may become a zombie. Process 100 creates 102 from the fork() on line 4, the pid

variable is still 101. Process 102 runs and enter the if statement and get an error from waitpid on

line 7. It may then terminate immediately before process 100 even continues.

Q13 (4 marks). Using the process IDs from your process tree, describe a situation where a child process

becomes an orphan after its parent terminates. If this is not possible, explain why.

Process 102 may also become an orphan. Process 100 creates 102 from the fork() on line 4, the

pid variable is still 101. The OS may not run process 102, and process 100 terminates after waiting

for process 101 to terminate. At this point process 102 is an orphan.

Q14 (2marks). Is the read-only code segment (e.g., the text section) duplicated in memory when a process

calls fork()? Explain why or why not, and how the operating system handles this situtation.

Since the pages storing the code are read-only they can safely be mapped to the same physical

memory in all processes (it’s shared between them).



Threads (20 points total)

Consider the following code:

1 void* run3(void* _);
2

3 static int x = 0;
4

5 void* run1(void* _) {
6 x = 4;
7 return NULL;
8 }
9

10 void* run2(void* _) {
11 pthread_t t3;
12 /* (A) */
13 pthread_create(&t3, NULL, run3, NULL);
14 pthread_detach(t3);
15 /* (B) */
16 printf("run2 x = %d\n", x);
17 return NULL;
18 }
19

20 void* run3(void* _) {
21 /* (C) */
22 printf("run3 x = %d\n", x);
23 return NULL;
24 }
25

26 int main(void) {
27 pthread_t t1;
28 pthread_create(&t1, NULL, run1, NULL);
29 pthread_join(t1, NULL);
30 pthread_t t2;
31 pthread_create(&t2, NULL, run2, NULL);
32 pthread_detach(t2);
33 printf("main x = %d\n", x);
34 return 0;
35 }

Assume we run this program as process pid 100, and all system calls are successful.

Q15 (2 marks). How many threads are created in total only from calls to pthread_create?

It depends, sometimes 2 and sometimes 3.

Q16 (3 marks). Is it possible for the only output to be main x = 4 after the process terminates? Justify your

answer. If so, what change would ensure multiple printf outputs always appear?

Yes, t2may not even execute before the main thread prints and terminates the process. We would

add a pthread_exit(NULL); before return 0;.



Q17 (3 marks). Provide a single possible sequence of outputs of printf calls from the provided code after

the process terminates (ignoring the previous scenario of just main x = 4).

run2 x = 4
run3 x = 4
main x = 4

only main x = 4 must be there, the rest may be there (in any order)

Q18 (3 marks). Does this program contain a potential data race? Justify your answer.

No, it does not. The only write (line 6) occurs not concurrently with any other writes or reads.

Q19 (3 marks). Does this program contain a data race if we replace /* (A) */ by ++x? Justify your answer.

Yes, the write (now on line 12), can happen concurrently with the read from the main thread at line

33.

Q20 (3 marks). Does this program contain a data race if we replace /* (B) */ by ++x and /* (C) */ by ++x?

Justify your answer.

Yes, the two writes from the replaced lines can occur concurrently with each other.

Q21 (3 marks). Can a thread become a “zombie” at any point during this program’s execution? Explain your

answer.

No, the main thread joins t1 before it’s possible to terminate the process and the other threads are

detached. This means they’ll be cleaned up whenever they terminate.



Locking (20 marks total)

The following code transfers money between two accounts. Each account has a unique ID, a balance (which

can go negative), and a mutex to protect its data.

1 struct account {
2 int id;
3 int balance;
4 pthread_mutex_t mutex;
5 };
6

7 void transfer(struct account *from, struct account *to, int amount) {
8 pthread_mutex_lock(&from->mutex);
9 pthread_mutex_lock(&to->mutex);

10

11 from->balance -= amount;
12 to->balance += amount;
13

14 pthread_mutex_unlock(&to->mutex);
15 pthread_mutex_unlock(&from->mutex);
16 }

For all questions assume that multiple threads may call transfer, all pointers are valid, and the balance may

go negative.

Q22 (4 marks). What is one potential problem with the code? Describe a scenario where it could occur.

A deadlock may occur, we may have a transfer from account 1 to 2, concurrently with another

transfer from account 2 to account 1. The first transfer locks the mutex for account 1, then the

second transfer locks the mutex for account 2.



Q23 (10 marks). Modify the transfer function below to ensure it has no issues. Assume that both mutexes

must still be held during the transfer operation (decrement and increment).

One example breaking circular wait is:

void transfer(struct account *from, struct account *to, int amount) {
if (from == to) { return; }
if (from->id < to->id) {

pthread_mutex_lock(&from->mutex);
pthread_mutex_lock(&to->mutex);

}
else {

pthread_mutex_lock(&to->mutex);
pthread_mutex_lock(&from->mutex);

}

from->balance -= amount;
to->balance += amount;

pthread_mutex_unlock(&from->mutex);
pthread_mutex_unlock(&to->mutex);

}

Q24 (6 marks). Is it possible to modify the transfer function so that it only locks one of the two accounts at

a time? Justify your answer. If it is possible show the code below, and describe a trade-off.

Yes, it is possible, for example:

void transfer(struct account *from, struct account *to, int amount) {
if (from == to) { return; }

pthread_mutex_lock(&from->mutex);
from->balance -= amount;
pthread_mutex_unlock(&from->mutex);

pthread_mutex_lock(&to->mutex);
to->balance += amount;
pthread_mutex_unlock(&to->mutex);

}

However, we may see some inconsistent values across all accounts which wouldn’t be possible

if we treated them like transactions. We would also have more potential parallelism, as we only

need one lock at a time (students just need to describe one trade-off).



Synchronization (25 marks total)

The following code initializes an array of hardware:

1 struct hardware {
2 void (*init)(void);
3

4

5 };
6

7 struct hardware_config {
8 int count;
9 struct hardware *hardware;

10

11

12

13

14 };
15

16 void initialize_remaining_config(struct hardware_config *config) {
17

18

19

20

21

22

23

24

25

26 }
27

28 void* run(struct hardware_config *config) {
29

30 for (int i = 0; i < config->count; ++i) {
31 struct hardware *hw = &config->hardware[i];
32

33 hw->init();
34

35 }
36

37 /* All hardware should be initialized before continuing here. */
38 remaining_code();
39 return NULL;
40 }

Previously, this function ran on a single-core system without threads.

This function has now been moved into a multi-threaded environment and may be called by any number of

threads on amachinewith an unknown number of cores. Each thread receives the same struct hardware_config

as input. You may add additional fields and initialize them in the initialize_remaining_config (this function

runs once sequentially before any run function).

Your task is to improve the run function such that:

1. Each hardware component’s init() function is called exactly once

2. The call to remaining_code(); occurs only after all hardware has been initialized.



Q25 (25 marks). Modify the code directly, or clearly describe your changes below.

For task 1, you can use semaphores. You would have a semaphore for each struct hardware initial-

ized to 1. In the for loop in the run function, only run the init function if sem_trywait successfully

decrements (returns 0). You can also do this with mutexes.

For task 2, you can use condition variables. Add a mutex, a condition variable, and a variable such

as int intitialized_count;. After running the init function from task 1: lock the mutex, increment

the initialized_count, and if initialized_count == config->count then call pthread_cond_broadcast,

finally unlock the mutex.

Before the remaining_code() call, add the following code:

pthread_mutex_lock(&config->mutex);
while (config->initialized_count < config->count) {

pthread_cond_wait(&config->cond, &config->mutex);
}
pthread_mutex_unlock(&config->mutex);



Page Replacement (18 marks total)

Assume the following accesses to physical page numbers:

1, 2, 3, 4, 1, 2, 5, 1, 2, 5, 3, 4

You have 4 physical pages in memory. Assume that all pages are initially on disk.

Q26 (10marks). Use the clock algorithm for page replacement. Recall on a page hit, you’ll set the reference

bit to 1. For each access write all the pages in memory after the access in the boxes below. State the number

of page faults after all the accesses.

1 2 3 4 1 2 5 1 2 5 3 4

1 1 1 1 1 1 5 5 5 5 5 4

2 2 2 2 2 2 1 1 1 1 1

3 3 3 3 3 3 2 2 2 2

4 4 4 4 4 4 4 3 3

9 page faults.

Q27 (6marks). Now, use the optimal algorithm for page replacement. All the other constraints are the same

as the previous clock algorithm question. For each access write all the pages in memory after the access in

the boxes below. State the number of page faults after all the accesses.

1 2 3 4 1 2 5 1 2 5 3 4

1 1 1 1 1 1 1 1 1 1 1 4

2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3

4 4 4 5 5 5 5 5 5

6 page faults (last replacement could be any page).

Q28 (2 marks). What hardware support is required to implement the clock algorithm efficiently?

The MMU would have to implement updating the reference bit (the reference bit is stored in the

PTE).



Filesystems (17 marks total)

Assume a filesystem with a block size of 4096 bytes, 4-byte block pointers, and 128-byte inodes. inodes

have 12 direct pointers, 1 indirect pointer, 1 double indirect pointer, and 1 triple indirect pointer.

Q29 (5 marks). What is the maximum file size this filesystem can support using a single inode? Show how

each level of indirection contributes to the total size (you do not have to simplify your answer).

(12+ 2
10 + 2

20 + 2
30)× 2

12

Q30 (2 marks). Why is triple indirection rarely used in practice?

Files are rarely larger than approximately 4 GiB (except for video files).

Q31 (4marks). Explain how reading a byte from the end of a large file stored with triple indirection differs in

I/O cost compared to a small file.

For a small file (fitting within the direct pointers of the inode), the inode points directly to the

data block, so only one block read is needed to read the byte (assuming the inode is already in

memory).

For a large file that requires triple indirection, the inode points to a triple indirect block, which

points to a double indirect block, which points to a single indirect block, which finally points to the

data block. This requires reading 4 separate blocks.

Assume you have a file whose filename is course.txt with the content:

ECE353

After running the following commands:

ln course.txt alt.txt
rm course.txt

Q32 (2 marks). what is the content of alt.txt?

ECE353

Q33 (4 marks). After running rm course.txt, what changes occur to the file’s inode, data blocks, and its

presence in the file system?

The directory entry for course.txt is removed.

The inode’s link count is decremented (from 2 to 1, since alt.txt still exists).

The inode and data blocks are not deleted because the link count is still non-zero.



Virtual Memory (10 marks total)

Consider a system with a page size of 16 KiB (1 KiB is 2
10
B), a PTE size of 8 bytes, and 3 levels of page

tables.

Q34 (5marks). Assume a process uses 1025 pages for data, how many pages does this require at minimum

for page tables? Justify your answer by stating what the role is for each page.

For this system, each page table can hold 2048 entries (
2
14

23
= 2

11
). Since each L0 page table can

hold 2048 entries, we would only need 1 to store 1025 entries for each data page. In the best

case we can have a single L1 page table pointing to this L0 page table, and a single L2 page table

pointing to the L1 page table. In total, we need 3 pages to store the page tables.

Q35 (5marks). Assume a process uses 1025 pages for data, howmany pages does this require at maximum

for page tables? Justify your answer by stating what the role is for each page.

The worst case is we have 1025 separate L0 page tables, each with a single entry to a data page.

We can also have 1025 separate L1 page tables, each with a single entry to an L0 page table. We

also need one L2 page table. Therefore, in the worst case we have 1 L2 page table with 1025

entries to L1 page tables. Across the L1 page tables, they point to our 1025 L0 page tables with

a single entry each. Therefore, in total, we’d need 1 + 1025 + 1025 or 2051 pages for the page

tables.




