Why Systems
Software?

2025 Winter ECE353: Systems Software Lecture 1
Jon Eyolfson 2.8.3

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License


http://creativecommons.org/licenses/by-sa/4.0/

Eyolfson



I'm Jon, Your Instructor

Eyolfson




I'm Jon, Your Instructor

Elf



EIf son



E Ifson



Evolfson



Understanding the operating system will make you a better programmer

You will either write software that:
¢ Interacts with the operating system
¢ |s the operating system



Important URLs for Course Resources

Very Important: Sign into https://compeng.gg
Lectures: https://eyolfson.com/courses/ece353/

Labs: https://compeng-gg.github.io/2625-winter-ece353-docs/

These links and others are on: https://q.utoronto.ca/ (Quercus)


https://compeng.gg
https://eyolfson.com/courses/ece353/
https://compeng-gg.github.io/2025-winter-ece353-docs/
https://q.utoronto.ca/

O GitHub

&) Discord
> YouTube

Connect your Discord and GitHub on


https://compeng.gg

Some students don't want to ask questions on Discord
because it's not anonymous, we fixed that

Use the command:
/anon <message>

The command sends your message anonymously in the current channel



It's much faster to get feedback from you and clarify if anything is unclear
We'll have live coding, I'll be able to explain any happy accidents

If there's anything else | can do to make attending a better experience
let me know!



Assessment Weight Due Date

Lab O 1% January 13

Lab1 4% January 20

Lab 2 4% February 3

Test 1 12.5%  February 12 @ 9 AM
Lab 3 4% February 24

Lab 4 4% March 10

Test 2 12.5%  March12 @ 9 AM
Lab 5 4% March 24

Lab 6 4% April 7

Final Exam 50% TBD



You can study together, discuss concepts on Discord
Don't post lab code on Discord, any other code is okay

Any cheating is not tolerated, and will only hurt you



The Recommended Books Complement Lectures

"Operating Systems: Three Easy Pieces”
by Remzi Arpaci-Dusseau and Andrea Arpaci-Dusseau

“"The C Programming Language”
by Brian Kernighan and Dennis Ritchie



https://pages.cs.wisc.edu/~remzi/OSTEP/
http://www.cs.wisc.edu/~remzi/
http://www.cs.wisc.edu/~dusseau/
https://en.wikipedia.org/wiki/The_C_Programming_Language
https://en.wikipedia.org/wiki/Brian_Kernighan
https://en.wikipedia.org/wiki/Dennis_Ritchie

C programming and debugging
Being able to convert between binary, hex, and decimal
Little-endian and big-endian

Memory being byte-addressable, memory addresses (pointers)

10



This course is challenging, please let me know if anything is unclear
You can ask interesting questions, all programs interact with the OS

By the end of the course you'll be a better programmer

1



An Operating System Manages Resources

Application APS 105
Operating System

Hardware ECE 243

12



Virtualization: share one resource by mimicking
multiple independent copies

Concurrency: handle multiple things happening at the same time

Persistence: retain data consistency even without power

13



"All problems in computer science can be solved by another level of
indirection”

- David Wheeler

14



Program: a file containing all the instructions and data required to run

Process: an instance of running a program

15



The Basic Requirements for a Process

Process

16



How are you able to run two different programs at the same time?

For example, a "hello world” program and another that
counts up one every second

17



Does the OS Allocate Different Stacks For Each Process?

The stacks for each process need to be in physical memory

One option is the operating system just allocates
any unused memory for the stack

Would there be any issues with this?

18



The compiler needs to pick an address for each variable when you compile
What if we had a global registry of addresses?

Would there be any issues with this?

19



Process 2

Process 1

Unused

20



Potential Memory Layout for Multiple Processes

Chrome

Process 2

Unused

20



What Happens If Two Processes Run the Same Program?

#include <stdio.h>
#include <unistd.h>

static int global

n
[av)
“e

int main(void) {
int local = 0;
while (1) §
++local;
++global;
printf("local = %d, global = %d\n", local, global);
sleep(1);

return 8;

}

21



Was the address of local the same between the two processes?
Was the address of global the same between the two processes?

What else may be needed for a process?

22



A Process Has Its Own Virtual Memory

Process

23



Example Code from This Class

All code will be in the “materials” repository located:
https://github.com/compeng-gg/2025-winter-ece353-materials

Compile the code:

cd lectures/81-why-systems-software
meson setup build
meson compile -C build

Execute the code:
build/read-four-bytes <FILE>

Source: materials/lectures/81-why-systems-software/read-four-bytes.c

24


https://github.com/compeng-gg/2025-winter-ece353-materials
https://github.com/compeng-gg/2025-winter-ece353-materials/blob/main/lectures/01-why-systems-software/read-four-bytes.c

Ox7F
0x02
0x40
0x00
0x01
0x00
BxA8
0x00
Bx81
0xC8
Ox6F

0x45
0x00
0x00
0x00
0x00
0x00
0x00
0x10
0x13
0x0B
0x20

Bx4C
OxB7
0x00
8x00
0x00
0x01
8x00
8x00
Bx80
Bx80
ox77

Ox46
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0xD2
0xD2
Ox6F

8x02
gx01
8x00
Bx40
Bx05
8x00
8x00
8x00
Bx21
8x00
Ox72

0x01
0x00
Bx00
0x00
0x00
8x00
0x00
0x00
0x00
0x00
0x6C

0x01
0x00
0x00
0x38
0x00
0x00
0x00
0x00
0xA0
0x80
Ox64

0x00
0x00
8x00
0x00
0x00
8x00
0x00
0x00
BxF2
8xD2
Ox0A

0x00
0x78
0x00
0x01
0x00
0x00
OxA8
0x08
Bx82
0x01

0x00
0x00
0x00
0x00
8x00
0x00
0x00
0x08
8x01
0x00

0x00
0x01
Bx08
Bx40
0x00
8x01
0x00
0x80
Bx80
0x00

0x00
0x00
0x00
0x00
0x00
0x00
0x00
0xD2
0xD2
0xD4

0x00
0x08
8x00
8x00
0x00
8x00
0x00
0x20
8x01
0x48

0x08
0x00
0x08
0x08
0x00
0x08
0x08
0x00
0x08
Bx65

0x00
0x00
0x00
0x00
8x00
0x00
0x00
0x80
0x00
Bx6C

0x00
0x00
Bx08
0x00
0x00
0x08
0x00
oxD?2
BxD4
Bx6C

25



Ox7F
0x02
0x40
0x00
0x01
0x00
OxA8
0x00
0x81
0xC8
Bx6F

0x45
0x00
0x00
0x00
0x00
0x00
0x00
0x10
0x13
0x6B
0x20

Bx4C
0xB7
8x00
0x00
8x00
8x01
0x00
8x00
0x80
0x80
Bx77

Ox46
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0xD2
0xD2
Ox6F

0x02
gx01
8x00
Ox40
gx05
8x00
8x00
8x00
Bx21
8x00
Bx72

0x01
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
Bx6C

0x01
0x00
0x00
0x38
0x00
0x00
0x00
0x00
0xA0
0x80
Ox64

0x00
8x00
0x00
0x00
8x00
0x00
0x00
8x00
BxF2
gxD?2
Bx0A

0x00
0x78
0x00
0x01
0x00
0x00
OxA8
0x08
0x82
0x01

8x00
8x00
8x00
8x00
8x00
8x00
8x00
8x08
8x01
8x00

Execute using: ./hello-world-linux-aarché4

0x00
0x01
Bx00
0x40
0x00
8x01
0x00
0x80
Bx80
0x00

0x00
0x00
0x00
0x00
0x00
0x00
0x00
oxD2
0xD2
0xD4

0x00
0x00
0x00
0x00
0x00
0x00
0x00
8x20
0x01
0x48

6x00
0x00
0x00
0x00
0x00
0x00
8x00
0x00
0x00
Bx65

8x00
8x00
8x00
8x00
8x00
8x00
8x00
0x80
8x00
8x6C

0x00
0x00
0x00
0x00
0x00
0x00
0x00
oxD2
BxD4
Bx6C

26



ISA stands for the instruction set architecture
It's the machine code, or numbers the CPU understands

x86-64 (aka amd64): for desktops, non-Apple laptops, servers
aarché4 (aka armé4): for phones, tablets, Apple laptops
riscv (aka rvé4gce): open-source implementation, similar to ARM

We'll touch on all of them in this course

217



Since our processes are independent, we need an explicit way to transfer
data

IPC: inter-process communication is transferring data between two
processes

File descriptor: a resource that users may either read bytes from or write
bytes to
(identified by an index stored in a process)

A file descriptor could represent a file, or your terminal

28



We can represent system calls like regular C functions

Here are two system calls we need for a basic “Hello world" program:

write( fd, *buf, count);
Description: writes bytes from a byte array to a file descriptor
fd - the file descriptor
buf - the address of the start of the byte array (called a buffer)
count - how many bytes to write from the buffer

exit_group( status);
Description: exits the current process and sets an exit status code
status - the exit status code (0-255)

29



By convention there's some expected file descriptors:
- standard input (read)
- standard output (write)
- standard error (write)

The most basic “"Hello world" program would start executing the following:

_start( ) {
write(7, ,» 12);
exit_group(0);

38



Application Programming Interface (API) abstracts the details and describes
the arguments and return value of a function

e.g. A function takes 2 integer arguments
Application Binary Interface (ABI) specifies the details, specifically how to
pass arguments and where the return value is

e.g. The same function using the C calling convention
(arguments on the stack)

31



The operating system “functions” do not have an address,
instead we can generate an interrupt for the OS

Generate an interrupt with a svc instruction, using registers for arguments:
® x8 — System call number

e x8 — 1t argument

e x1 — 2" argument

e x2 — 3 argument

e x3 — 4™ argument

e x4 — 5" argument

e x5 — 6" argument

What are the limitations of this?

Ky



System calls use registers, while C is stack based:

* Arguments pushed on the stack from right-to-left order

® rax, rcx, rdx are caller saved

e Remaining registers are callee saved

e Some arguments may be passed in registers instead of the stack

See for more details (there's lots of conventions, think ECE 243)

What advantages does this give us vs system call ABI? Disadvantages?

33


https://en.wikipedia.org/wiki/X86_calling_conventions

Executable and Linkable Format (ELF) specifies both executables and
libraries

Always starts with the 4 bytes: 8x7F 0x45 Bx4C Ox46
or with ASCIl encoding: DEL 'E' 'L' 'F'

These 4 bytes are called "magic”, and that's how you know what kind of file
this is (other file formats may have a different number of bytes)

See:
e.g., PDF files start with %PDF-

34


https://en.wikipedia.org/wiki/List_of_file_signatures

Tells the OS to load the entire executable file into memory at address 8x10000

The file header is 64 bytes, and the “program header” is 56 bytes
(120 bytes total)

The next 36 bytes are instructions, then 12 bytes for the string

Instructions start at 8x10878 (8x78 is 120)
The string (data) starts at 0x1889C (8x9C is 156)

You can use: readelf -a <FILE>to see the gory details

35



Visually How Our ELF File Gets Divided

File Header

Program Header

Instructions Bx08 0x08 Bx80 OxD2 Bx20 0x08 Bx88 BXD2
8x81 Bx13 0x80 BxD2 Ox21 0x00 BxAB BxF2 Bx82 Bx81 Bx88 BxD2 0x01 0x09 9x00 OxD4
BxC8 BxBB 0x30 BxD2 0x00 0x00 Bx80 BxD2 BxB1 Bx88 Bx88 BxD4

Data Bx48 Bx65 Bx6C BXAC
Bx6F Bx20 Bx77 BX6F Bx72 Bx6C Oxb4 BxBA

36



Instructions for “Hello world”, Using the Linux AArch64 ABI

Plug in the 36 bytes for instructions into a disassembler, such as:
https://onlinedisassembler.com/

Our disassembled instructions:

mov  x8, Ox40 #64

mov x@, 0x01 #1

mov  x1, Bx9C #156
movk x1, 0x61, 1sl 16 #0x10000
mov x2, 6x6C #12

svc 0x0

mov  x8, Ox5E # 94

mov x@, 0x0 #0

sve 0x0


https://onlinedisassembler.com/

The 12 bytes of data is the string itself, ASCIl encoded:
Bx48 0Bx65 Ox6C Bx6C Ox6F Ox20 Bx77 Bx6F Ox72 Ox6C Bx64 OxOA

Low level ASCII tip: bit 5is 8/1 for upper case/lower case (values differ by 32)

This accounts for every single byte of our 168 byte program, let's see what C
does...

Can you already spot a difference between strings in our example compared
to C?

38



Kernel mode is a privilege level on your CPU that gives access to more
instructions

Different architectures have a different name for this mode
e.g., this is S-mode on RISC-V

39



Kernel mode is a privilege level on your CPU that gives access to more
instructions

Different architectures have a different name for this mode
e.g., this is S-mode on RISC-V

The kernel is the part of your operating system that runs in kernel mode

These instructions allow only trusted software to interact with hardware
e.g., only the kernel can manage virtual memory for processes

39



More Privileged CPU Modes Can Access More Instructions

CPU Mode Software
Least privileged

3

U-mode
(User)

S-mode
(Supervisor)

H-mode
(Hypervisor)

M-mode
(Machine)

v

Most privileged




System Calls Transition Between User and Kernel Mode

User space

read write open close stat mmap brk pipe clone fork
execve exit wait4 chdir mkdir rmdir creat mount (453 total)
init_module delete_module clock_nanosleep exit_group

Kernel space

41



We can trace all the system calls a process makes on Linux using the
command:
strace <PROGRAM>

We can see all the system calls our "Hello world"” program makes:
execve("./hello_world", ["./hello_world"], Bx7ffd0489de4Bd /* 46 vars */) = 0
write(1, "Hello world\n", 12) =12

exit_group(0) =7

+++ exited with 0 +++

Now, let's really see what C does...



execve("./hello_world_c", ["./hello_world_c"], Bx7ffch3444f68 /* 46 vars */) =

brk(NULL) = Bx5636ah9eabbn
openat(AT_FDCWD, "/etc/1d.so.cache", O_RDONLY|O_CLOEXEC) =
fstat(3, {st_mode=S_IFREG|B644, st_size=149337, ...}) =@
mmap(NULL, 149337, PROT_READ, MAP_PRIVATE, 3, 8) = 8x7f4d43846000
close(3) =0

openat(AT_FDCWD, "/usr/lib/libc.so.6", O_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\2\1\1\3\8\0\0\6\08\0\6\6\3\0>\0\1\8\68\00800C". .., 832) =

1seek(3, 792, SEEK_SET) =792

832

read(3, "\4\8\0\8\24\6\0\6\3\6\8\6GNU\B\201\336\t\36\251c\324"..., 68) = 68

fstat(3, {st_mode=S_IFREG|@8755, st_size=2136848, ...}) =
mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS,
1seek(3, 792, SEEK_SET) =792

-1, 8) = Bx7f4d43844000

read(3, "\4\B\B\6\24\B\B\B\S\B\B\BGNU\B\201\336\t\36\251c\324" , 68) =

lseek(3 864, SEEK_SET)
read(3, "\4\8\8\8\2B\B\8\8\5\8\8\HGNU\B\2\8\8\368\4\8\8\9\3\9\9" 32)

=32

43



mmap(NULL, 1848896, PROT_READ, MAP_PRIVATE|MAP_DENYWRITE, 3, 8) = 8x7f4d43686000
mprotect(Bx7f4d436a2000, 1671168, PROT_NONE) = 8
mmap(Bx7f4d436a2000, 1355776, PROT_READ|PROT_EXEC,

MAP_PRIVATE |MAP_FIXED|MAP_DENYWRITE, 3, 0x22000) = 8x7f4d43622000
mmap(Bx7F4d437ed088, 311296, PROT_READ,

MAP_PRIVATE |MAP_FIXED|MAP_DENYWRITE, 3, 0x16d0680) = 0x7f4d437edeoe
mmap(Bx7f4d4383a000, 24576, PROT_READ|PROT_WRITE,

MAP_PRIVATE |MAP_FIXED|MAP_DENYWRITE, 3, 0x1b9608) = 0x7f4d43832000
mmap (Bx7f4d43840000, 13888, PROT_READ|PROT. WRITE,

MAP_PRIVATE |MAP_ FIXEDlMAP ANONYMOUS, , B) = Bx7f4d438406000
close(3) = B
arch_prct1(ARCH_SET_FS, 8x7f4d43845500) =
mprotect(Bx7f4d4383a000, 16384, PRUT_READ) =
mprotect(Bx5636a9abd80e, 4696, PROT_READ)
mprotect(0x7f4d43894008, 40696, PROT_READ)
munmap (Bx7f4d43846000, 149337) =
fstat(1, {st_mode=S_IFCHR|8628, st_rdev= makedev(8x88 8x1), ...})

8

n
©

44



System Calls for “Hello world” inC,
Setting Up Heap and Printing

brk (NULL) = Bx5636ah9eabbo
brk(8x5636ababhoge) = Bx5636ababbBoo
write(1, "Hello world\n", 12) 12

exit_group(8) ?

+++ exited with 8 +++

The C version of “Hello world" ends with
the exact same system calls we made

45



Writing kernel code is more like writing library code (there's no main)

The kernel lets you load code (called modules)

Your code executes on-demand
e.g. when it's loaded manually, new hardware, or accessing a certain file

If you write a kernel module, you can execute privileged instructions
and access any kernel data, so you could do anything

46



A Monolithic Kernel Runs Operating System Services in

Kernel Mode

User space
Kernel space

Virtual Memory

Process Scheduling

IPC

File Systems

Device Drivers

47



A Microkernel Runs the Minimum Amount of Services in

Kernel Mode

File Systems

Device Drivers

Advanced IPC

User space
Kernel space

Virtual Memory

Process Scheduling

Basic IPC

48



"Hybrid" kernels are between monolithic and microkernels
Emulation services to user mode (Windows)
Device drivers to user mode (macOS)

Nanokernels and picokernels
Move even more into user mode than traditional microkernels

There's different architectural lines you can draw with different trade-offs

49



The lessons from the lecture:
® The kernel is the part of the OS that interacts with hardware
(it runs in kernel mode)
e System calls are the interface between user and kernel mode
® Every program must use this interface!
¢ File format and instructions to define a simple “Hello world"” (in 168 bytes)

¢ Difference between APl and ABI
* How to explore system calls

e Different kernel architectures shift how much code runs in kernel mode

58



