
Processes

2025 Winter ECE353: Systems Software

Jon Eyolfson

Lecture 3

2.0.1

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/


Recall: A Process is an Instance of a Running Program

1



WeCanAddMore to a Process

2



AProcessControl Block (PCB) ContainsAll Information

Specifically, in Linux, this is the task_struct you can browse on

GitHub

It contains:

• Process state

• CPU registers

• Scheduling information

• Memory management information

• I/O status information

• Any other type of accounting information

Each process gets a unique process ID (pid) to keep track of it

3

https://github.com/torvalds/linux/blob/master/include/linux/sched.h#L743


Process State Diagram (YouCould RenameWaiting to Ready)

Createdstart Waiting

Running

Blocked

Terminated

4



YouCan Read Process State Using the “proc” Filesystem

There’s a standard /proc directory (on Linux) that represents the kernel’s

state

These aren’t real files, they just look like it!

Every directory that’s a number (process ID) in /proc represents a process

There’s a file called status that contains the state (used for Lab 1)

5



WeCould Create Processes fromScratch

We load the program into memory and create the process control block

(this is what Windows does)

Unix decomposes process creation into more flexible abstractions

Note: for programs with threads, this is a bad idea

(prefer posix_spawn instead)

6



Instead of Creating aNewProcess,WeCould Clone It

Pause the currently running process, and copy it’s PCB into a new one

This will reuse all of the information from the process, including variables!

Distinguish between the two processes with a parent and child relationship

They could both execute different parts of the program together

The new processes can either continue or load a new program

7



forkCreates aNewProcess,ACopy of theCurrent One

int fork(void) as the following API:

• Returns the process ID of the newly created child process

-1: on failure

0: in the child process

>0: in the parent process

There are now 2 processes running

Note: they can access the same variables, but they’re separate

Operating system does “copy on write” to maximize sharing

8



OnPOSIX Systems,YouCan Find Documentation Using man

We’ll be using the following APIs:

• fork

• execve

• wait (next lecture)

You can use man <function> to look up documentation,

or man <number> <function>

2: System calls

3: Library calls

9



fork-example.cHasOne Process Execute Each Branch

int main(int argc, char *argv[]) {

pid_t returned_pid = fork();

if (retured_pid == -1) {

int err = errno;

perror("fork failed");

return err;

}

if (returned_pid == 0) {

printf("Child returned pid: %d\n", returned_pid);

printf("Child pid: %d\n", getpid());

printf("Child parent pid: %d\n", getppid());

}

else {

printf("Parent returned pid: %d\n", returned_pid);

printf("Parent pid: %d\n", getpid());

printf("Parent parent pid: %d\n", getppid());

}

return 0;

}

10



execveReplaces the ProcesswithAnother Program,and
Resets

execve has the following API:

• pathname: Full path of the program to load

• argv: Array of strings (array of characters), terminated by a null pointer

Represents arguments to the process

• envp: Same as argv

Represents the environment of the process

• Returns an error on failure, does not return if successful

11



execve-example.cTurns the Process into ls

int main(int argc, char *argv[]) {

printf("I'm going to become another process\n");

char *exec_argv[] = {"ls", NULL};

char *exec_envp[] = {NULL};

int exec_return = execve("/usr/bin/ls", exec_argv, exec_envp);

if (exec_return == -1) {

exec_return = errno;

perror("execve failed");

return exec_return;

}

printf("If execve worked, this will never print\n");

return 0;

}

12



TheOperating SystemCreates Processes

The operating system has to:

• Maintain process control blocks, including state

• Create new processes

• Load a program, and re-initialize a process with context

13



Linux Terminology Is Slightly Different

You can look at a process’ state by reading /proc/<PID>/status | grep State

Replace <PID> with the process ID (or self)

R: Running and runnable [Running and Waiting]

S: Interruptible sleep [Blocked]

D: Uninterruptible sleep [Blocked]

T: Stopped

Z: Zombie

The kernel lets you explicitly stop a process to prevent it from running

You or another process must explicitly continue it

14



OnUnix, theKernel LaunchesASingle User Process

After the kernel initializes, it creates a single process from a program

This process is called init, and it looks for it in /sbin/init

Responsible for executing every other process on the machine

Must always be active, if it exits the kernel thinks you’re shutting down

For Linux, init will probably be systemd but there’s other options

Aside: some operating systems create an “idle” process that the scheduler

can run

15



ATypical Process Tree on theVirtualMachine

1: init

187: journald 536: systemd --user

597: gnome-shell

946: firefox

996: firefox 1089: firefox 1147: firefox

1071: gnome-terminal-server

1086: zsh

1240: htop

200: udevd

16



HowYouCan SeeYour Process Tree

Use htop

You can press F5 to switch between tree and list view

17



ProcessesAreAssigned a Process ID (pid) OnCreation and

DoesNot Change

The process ID is just a number, and is unique for every active process

On most Linux systems the maximum pid 32768, and 0 is reserved (invalid)

Eventually the kernel will recycle a pid, after the process dies, for a new

process

Remember: each process has its own address space (independent view of

memory)

18



Maintaining the Parent/Child Relationship

Previously, we made sure that our parent exited last (by using sleep)

What happens if the parent process exits first, and no longer exists?

19



The Parent Process is Responsible for Its Child

The operating system sets the exit status when a process terminates

(the process terminates by calling exit)

It can’t remove its PCB yet

The minimum acknowledgment the parent has to do is read the child’s exit

status

There’s two situations:

1. The child exits first (zombie process)

2. The parent exits first (orphan process)

20



YouNeed to Call wait onChild Processes

wait as the following API:

• status: Address to store the wait status of the process

• Returns the process ID of child process

-1: on failure

0: for non blocking calls with no child changes

>0: the child with a change

The wait status contains a bunch of information, including the exit code

Use man wait to find all the macros to query wait status

You can use waitpid to wait on a specific child process

21



wait-example.cBlocks Until TheChild Process Exits,and
Cleans Up

int main(int argc, char *argv[]) {

pid_t pid = fork();

if (pid == -1) { return errno; }

if (pid == 0) {

sleep(2);

}

else {

printf("Calling wait\n");

int wstatus;

pid_t wait_pid = wait(&wstatus);

if (WIFEXITED(wstatus)) {

printf("Wait returned for an exited process! pid: %d, status: %d\n",

wait_pid, WEXITSTATUS(wstatus));

}

}

return 0;

}

22



AZombie ProcessWaits for Its Parent to Read Its Exit Status

The process is terminated, but it hasn’t been acknowledged

A process may have an error in it, where it never reads the child’s exit status

The operating system can interrupt the parent process to acknowledge the

child

It is just a suggestion and the parent is free to ignore it

This is a basic form of IPC called a signal

The operating system has to keep a zombie process until it’s acknowledged

If the parent ignores it, the zombie process needs to wait to be re-parented

23



AnOrphan ProcessNeeds aNewParent

The child process lost its parent process

The child still needs a process to acknowledge its exit

The operating system re-parents the child process to init

The init process is now responsible to acknowledge the child

24



orphan-example.cThe Parent Exits Before theChild, init
Cleans Up

int main(int argc, char *argv[]) {

pid_t pid = fork();

if (pid == -1) {

int err = errno;

perror("fork failed");

return err;

}

if (pid == 0) {

printf("Child parent pid: %d\n", getppid());

sleep(2);

printf("Child parent pid (after sleep): %d\n", getppid());

}

else {

sleep(1);

}

return 0;

}

25



zombie-example.cThe ParentMonitors theChild ToCheck Its
State

pid_t pid = fork();

// Error checking

if (pid == 0) {

sleep(2);

}

else {

// Parent process

int ret;

sleep(1);

printf("Child process state: ");

ret = print_state(pid);

if (ret < 0) { return errno; }

sleep(2);

printf("Child process state: ");

ret = print_state(pid);

if (ret < 0) { return errno; }

}

26



You’re Responsible forManaging Processes

The operating system maintains a strict parent/child relationship

You should be able to identify (and prevent) the following:

• Zombie processes

• Orphan processes

27


