
Why Computer

Systems

Programming?

2024 Fall ECE454: Computer Systems Programming

Jon Eyolfson

Lecture 1

1.0.0

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/


I’m Jon,Your Instructor

EyolfsonEyolfsonElf sonE lfsonEyolfson

1



I’m Jon,Your Instructor

EyolfsonEyolfsonElf sonE lfsonEyolfson

1



I’m Jon,Your Instructor

EyolfsonEyolfsonElf sonE lfsonEyolfson

1



I’m Jon,Your Instructor

EyolfsonEyolfsonElf sonE lfsonEyolfson

1



I’m Jon,Your Instructor

EyolfsonEyolfsonElf sonE lfsonEyolfson

1



I’m Jon,Your Instructor

EyolfsonEyolfsonElf sonE lfsonEyolfson

1



WhyComputer Systems Programming?

You can write functional software, but can you write performant software?

Most software you interact with runs on cloud servers that:

• Are very expensive, saving 2% of the costs is significant

• Use a lot of power

• Are idle a significant amount of time

2



Important URLs for Course Resources

Very Important: Sign into https://compeng.gg

Lectures: https://eyolfson.com/courses/ece454/

Labs: https://compeng-gg.github.io/2024-fall-ece454-docs/

Materials: https://github.com/compeng-gg/2024-fall-ece454-materials

These links and others are on: https://q.utoronto.ca/ (Quercus)

3

https://compeng.gg
https://eyolfson.com/courses/ece454/
https://compeng-gg.github.io/2024-fall-ece454-docs/
https://github.com/compeng-gg/2024-fall-ece454-materials
https://q.utoronto.ca/


Labs onGitHub,Discussion onDiscord,Streams onYouTube

Connect your Discord and GitHub on https://compeng.gg

4

https://compeng.gg


AnonymousDiscordMessages

Some students don’t want to ask questions on Discord

because it’s not anonymous, we fixed that

Use the command:

/anon <message>

The command sends your message anonymously in the current channel

5



LectureAttendance is Still Important

It’s much faster to get feedback from you and clarify if anything is unclear

We’ll have live coding, I’ll be able to explain any happy accidents

Let me know anything else that might make the course better!

This is a new course for me, so be gentle

6



Evaluation for this Course

Assessment Duration Weight Due Date

Lab 1 1 week 5% September 16

Lab 2 3 weeks 9% October 7

Midterm Exam 1.25 hours 20% October 17 (tentative)

Lab 3 3 weeks 9% November 5

Lab 4 2 weeks 7% November 19

Lab 5 2 weeks 10% December 3

Final Exam 2.5 hours 40% TBD

7



Academic Honesty Policy

You can study together, discuss concepts on Discord

Don’t post lab code on Discord, any other code is okay

Any cheating is not tolerated, and will only hurt you

8



Please Provide Feedback!

This course is challenging, please let me know if anything is unclear

You can ask any questions, there’s lots of open source software to look at too

By the end of the course you’ll be a better programmer

9



WeCareAbout Performance in This Course

Specifically, we’ll focus on:

Scalability

Efficiency

10



In that Past,YouCould JustWait

Moore’s Law was in full swing doubling transistors every ~18 months,

and all the extra transistors went to a single core speed

That meant if you wanted your program to go twice as fast,

just wait 18 months and buy new hardware

11



Current Trends

Moore’s law hasn’t hit a wall just yet (although physical limits are coming)

Single core performnce has leveled off, due to physics a CPU

running at 10 GHz would be hotter than the surface of the sun

(don’t quote me on that)

Modern systems use many cores, and you need to use them

You’ll need to program with parallelism in mind

For large scale software, you’ll also have to use multiple machines

12



There’s Also a Trend to SpecializedHardware

Most CPUs now have dedicated hardware certain functions

e.g. video encoding/decoding

ASIC (application-specific integrated circuit) for less common functions

e.g. bitcoin mining

You can also program GPUs that are massively parallel

13



LatencyNumbers Every Programmer Should Know

L1 cache reference (~ 80 KB) 1 ns

Branch mispredict 3 ns

L2 cache reference (~ 2 MB) 4 ns

Mutex lock/unlock 17 ns

Send 1K bytes over 1 Gbps network 44 ns

Main memory reference 100 ns

Compress 1K bytes with Zippy 2 μs

Read 1 MB sequentially from memory 3 μs

Read 4K randomly from SSD 16 μs

Read 1 MB sequentially from SSD 49 μs

Round trip within same datacenter 500 μs

Read 1 MB sequentially from disk 825 μs

Disk seek 2 ms

Send packet Cali → Netherlands → Cali 150 ms

14



Reducing Latency RequiresYou to Find the Bottleneck

If you can avoid disk I/O, you could improve performance by 100 000 times!

Memcached for example, caches requests to a database or API

You could also allocate your memory in a better way

If you can fit the data entirely in cache, it’ll be much faster

This makes single-threaded applications faster, but we’ll also parallelize

We’ll start with single-threaded applications and than multi-threaded

15



Module 1: CodeMeasurement

Topics

Finding the bottleneck

Principles of code optimization, and using an optimizing compiler

Profiling (measuring time)

Labs

Lab 1: investigating Lab 2

16



Module 2: MemoryManagement

Topics

Memory hierarchy

Caches and locality

Virtual memory

Labs

Lab 2: Optimizing memory performance

Lab 3: Writing your own memory allocator

17



Module 3A: Parallelization on a SingleMachine

Topics

Threads and threaded programming

Synchronization and performance

Labs:

Lab 4: Threads and synchronization methods

Lab 5: Parallelizing a game simulation program

18



Module 3B: Parallelization onMutlipleMachines

Topics

Frameworks for big data analytics

Cloud computing and storage systems

19



How theModules Fit Together

Core

Cache

Memory

Module 1: Code Optimization

Module 2: Memory Management

Core 1 Core 2

Cache Cache

Memory

Module 3A: Multi-core Parallelization

20



Code Examples areAvailable to You

You should have access to the GitHub repository:

https://github.com/compeng-gg/2024-fall-ece454-materials

The setup is the same as the labs:

https://compeng-gg.github.io/2024-fall-ece454-docs/setup/

You should just have to open the folder in VSCode

Unlike the labs, these are your steps to compile (in the examples directory):

meson setup build

meson compile -C build

(the executables will be in the build directory)

21

https://github.com/compeng-gg/2024-fall-ece454-materials
https://compeng-gg.github.io/2024-fall-ece454-docs/setup/


“Premature optimization is the root of all evil.”

- Sir Tony Hoare

22



Let’s Try toWrite a cpClone

The source file is located in the materials repository at:

lectures/01-why-computer-systems-programming/examples/cp-clone.c

At the comment, we might add the following optimization:

if (stat.st_size == 0) {

return 0;

}

so we can avoid any unnecessary read calls

However, this breaks copying “files” like /proc/cpuinfo

23

https://github.com/compeng-gg/2024-fall-ece454-materials/blob/main/lectures/01-why-computer-systems-programming/examples/cp-clone.c


Let’s Try toWrite a cpClone

The source file is located in the materials repository at:

lectures/01-why-computer-systems-programming/examples/cp-clone.c

At the comment, we might add the following optimization:

if (stat.st_size == 0) {

return 0;

}

so we can avoid any unnecessary read calls

However, this breaks copying “files” like /proc/cpuinfo

23

https://github.com/compeng-gg/2024-fall-ece454-materials/blob/main/lectures/01-why-computer-systems-programming/examples/cp-clone.c


HowDoYouKnowanOptimization is Premature?

This is a bit trickier to answer...

What’s the purpose of the program? Are you only going to use it once?

It likely doesn’t matter

Are you optimizing the bottleneck?

If not, you don’t need to waste time

Are you optimizing the common case or special case?

If it’s the special case, you don’t need to worry

What price am I paying?

Develop productivity? Readability? Program size?

24



WhatYouWant toAvoid

// When I wrote this, only God and I understood what I was doing

// Now, God only knows

//

// Therefore if you are trying to optimize this routine and it fails

// (most surley), please increase this counter as a warning for the

// next person:

//

// total_hours_wasted_here = 254

25



The EasiestWay toMeasure Performance—Speedup

We’re used to latency, how long does it take to do a task

Slatency =
Lold

Lnew

where,

Slatency is the speedup (in terms of latency)

Lold is the latency of the old task

Lnew is the latency of the new task

For example: our original task takes 1 second to complete,

then we optimize it to 0.5 seconds Lold = 1s

Lnew = 0.5s

then, Slatency =
Lold

Lnew
= 1s

0.5s = 2

26



The EasiestWay toMeasure Performance—Speedup

We’re used to latency, how long does it take to do a task

Slatency =
Lold

Lnew

where,

Slatency is the speedup (in terms of latency)

Lold is the latency of the old task

Lnew is the latency of the new task

For example: our original task takes 1 second to complete,

then we optimize it to 0.5 seconds Lold = 1s

Lnew = 0.5s

then, Slatency =
Lold

Lnew
= 1s

0.5s = 2

26



YouCanMeasure the Latency of an Exectablewith time

You can use /usr/bin/time -p <executable> (not time the shell built-in),

an example of the output is:

real 159.98

user 0.21

sys 3.26

real is the number of seconds that actually passed (wall time)

user is the number of seconds all cores execute for in user mode

(for multicore this can be greater than real)

sys is the number of seconds all cores execute for in kernel mode

27



WeAlsoWant to Consider Throughput

Throughput is the number of tasks you can do per unit time

Q = P

L

where,

Q is the throughput

P is the number of tasks you can do simultaneously

L is the latency of a single task

28



Airplanes as a Real Life Example

Plane YYZ→ FRA Passengers

Airbus 8 hours 470

Concorde 4 hours 132

Which plane has better performance?

Any other real life examples you can think of?

29



Let’s Consider aWebserver Handling Requests Serially

Runtime

Req 1 Req 2 Req 3

Assume we buy a faster CPU, we’ll have

higher throughput and lower latency

This is a positive correlation

30



Now theWebserver Handles Requests Parallelly

Runtime

Req 1 Req 2 Req 3

turns into

Runtime

Req 1

Req 2

Req 3

Latency is worse (larger), but throughput is higher

This is a negative correlation

31



There are Limits—Amdahl’s Law

The law states that overall speedup you achieve

depends on the fraction you can speedup

Let p be the proportion of the task you can speedup

Let s be the speedup of that proportion

Slatency(s) =
1

(1−p)+ p

s

which means:
Slatency(s) ≤

1

1− p

lim
s→∞

Slatency(s) =
1

1− p
.

In other words, if you can speed up 90% of your code (p = 0.9),
the best overall speed you can achieve is 10

32



There are Limits—Amdahl’s Law

The law states that overall speedup you achieve

depends on the fraction you can speedup

Let p be the proportion of the task you can speedup

Let s be the speedup of that proportion

Slatency(s) =
1

(1−p)+ p

s

which means:
Slatency(s) ≤

1

1− p

lim
s→∞

Slatency(s) =
1

1− p
.

In other words, if you can speed up 90% of your code (p = 0.9),
the best overall speed you can achieve is 10

32



AnExample UsingAmdhal’s Law

If an optimization makes loops go 3 times faster,

and my program spends 70% of its time in loops,

how much faster will my program go?

33



There’s Other PerformanceConsiderations

Utilization, Goodput (only measure useful data), Jitter (consistency)

Do we care about the best case, worse case, or average case?

Performance evlauation is an active field of research

34



What Being Responsible for PerformanceMayDo toYou

35



We’ll UseC++ in theCourse

Why would you want to use C++? The most illustrative example is sorting

What’s faster, and why? What is easier to read?

1. Using qsort in C

2. Using a hand written sort in C

3. Using sort in C++ with an array

4. Using sort in C++ with a std::vector

36


