Why Computer
Systems
Programming?

2024 Fall ECE454: Computer Systems Programming Lecture 1
Jon Eyolfson 1.8.0

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License


http://creativecommons.org/licenses/by-sa/4.0/

I'm Jon, Your Instructor

Eyolfson



I'm Jon, Your Instructor

Eyolfson




I'm Jon, Your Instructor

Elf



I'm Jon, Your Instructor

EIf son



I'm Jon, Your Instructor

E Ifson



I'm Jon, Your Instructor

Eyolfson



Why Computer Systems Programming?
You can write functional software, but can you write performant software?

Most software you interact with runs on cloud servers that:
e Are very expensive, saving 2% of the costs is significant
* Use a lot of power

* Are idle a significant amount of time



Important URLs for Course Resources

Very Important: Sign into https://compeng.gg
Lectures: https://eyolfson.com/courses/ece454/
Labs: https://compeng-gg.github.io/2024-fall-ece454-docs/
Materials: https://github.com/compeng-gg/2624-fall-ece454-materials

These links and others are on: https://q.utoronto.ca/ (Quercus)


https://compeng.gg
https://eyolfson.com/courses/ece454/
https://compeng-gg.github.io/2024-fall-ece454-docs/
https://github.com/compeng-gg/2024-fall-ece454-materials
https://q.utoronto.ca/

O GitHub

&) Discord
> YouTube

Connect your Discord and GitHub on


https://compeng.gg

Anonymous Discord Messages

Some students don't want to ask questions on Discord
because it's not anonymous, we fixed that

Use the command:
/anon <message>

The command sends your message anonymously in the current channel



Lecture Attendance is Still Important

It's much faster to get feedback from you and clarify if anything is unclear
We'll have live coding, I'll be able to explain any happy accidents

Let me know anything else that might make the course better!

This is a new course for me, so be gentle



Evaluation for this Course

Assessment
Lab 1

Lab 2
Midterm Exam
Lab 3

Lab 4

Lab 5

Final Exam

Duration
T week

3 weeks
1.25 hours
3 weeks

2 weeks

2 weeks
2.5 hours

Weight
5%

9%
20%
9%

7%
10%
40%

Due Date

September 16
October 7

October 17 (tentative)
November 5
November 19
December 3

TBD



Academic Honesty Policy

You can study together, discuss concepts on Discord
Don't post lab code on Discord, any other code is okay

Any cheating is not tolerated, and will only hurt you



Please Provide Feedback!

This course is challenging, please let me know if anything is unclear

You can ask any questions, there's lots of open source software to look at too

By the end of the course you'll be a better programmer



We Care About Performance in This Course

Specifically, we'll focus on:
Scalability
Efficiency

10



In that Past, You Could Just Wait
Moore's Law was in full swing doubling transistors every ~18 months,
and all the extra transistors went to a single core speed

That meant if you wanted your program to go twice as fast,
just wait 18 months and buy new hardware

1



Current Trends

Moore's law hasn't hit a wall just yet (although physical limits are coming)

Single core performnce has leveled off, due to physics a CPU
running at 10 GHz would be hotter than the surface of the sun
(don't quote me on that)

Modern systems use many cores, and you need to use them
You'll need to program with parallelism in mind

For large scale software, you'll also have to use multiple machines

12



There's Also a Trend to Specialized Hardware
Most CPUs now have dedicated hardware certain functions
e.g. video encoding/decoding

ASIC (application-specific integrated circuit) for less common functions
e.g. bitcoin mining

You can also program GPUs that are massively parallel

13



Latency Numbers Every Programmer Should Know

L1 cache reference (~ 80 KB)

Branch mispredict

L2 cache reference (~ 2 MB)

Mutex lock/unlock

Send 1K bytes over 1 Gbps network
Main memory reference

Compress 1K bytes with Zippy

Read 1 MB sequentially from memory
Read 4K randomly from SSD

Read 1 MB sequentially from SSD
Round trip within same datacenter
Read 1 MB sequentially from disk
Disk seek

Send packet Cali > Netherlands - Cali

1

3
4
17
44
y[0]0]
2

3

16
49
500
825

2
150

ns
ns
ns
ns
ns
ns
s
s
s
Ms
us
VIS
ms
ms

14



Reducing Latency Requires You to Find the Bottleneck

If you can avoid disk 1/O, you could improve performance by 100 000 times!
Memcached for example, caches requests to a database or API

You could also allocate your memory in a better way
If you can fit the data entirely in cache, it'll be much faster

This makes single-threaded applications faster, but we'll also parallelize

We'll start with single-threaded applications and than multi-threaded

15



Module 1: Code Measurement

Topics
Finding the bottleneck
Principles of code optimization, and using an optimizing compiler

Profiling (measuring time)

Labs
Lab 1: investigating Lab 2

16



Module 2: Memory Management

Topics
Memory hierarchy
Caches and locality

Virtual memory

Labs
Lab 2: Optimizing memory performance

Lab 3: Writing your own memory allocator

17



Module 3A: Parallelization on a Single Machine

Topics
Threads and threaded programming
Synchronization and performance
Labs:

Lab 4: Threads and synchronization methods
Lab 5: Parallelizing a game simulation program

18



Module 3B: Parallelization on Mutliple Machines

Topics

Frameworks for big data analytics
Cloud computing and storage systems

19



How the Modules Fit Together

-D Module 1: Code Optimization

Module 2: Memory Management

- - Module 3A: Multi-core Parallelization

20



Code Examples are Available to You

You should have access to the GitHub repository:
https://github.com/compeng-gg/2024-fall-ece454-materials

The setup is the same as the labs:
https://compeng-gg.github.io/20824-fall-ece454-docs/setup/

You should just have to open the folder in VSCode

Unlike the labs, these are your steps to compile (in the examples directory):

meson setup build
meson compile -C build

(the executables will be in the build directory)

21


https://github.com/compeng-gg/2024-fall-ece454-materials
https://compeng-gg.github.io/2024-fall-ece454-docs/setup/

“Premature optimization is the root of all evil."

- Sir Tony Hoare

22



Let’s Try to Write a cp Clone

The source file is located in the materials repository at:
lectures/01-why-computer-systems-programming/examples/cp-clone.c

At the comment, we might add the following optimization:

(stat.st_size == 08) {
K
}

SO we can avoid any unnecessary read calls

23


https://github.com/compeng-gg/2024-fall-ece454-materials/blob/main/lectures/01-why-computer-systems-programming/examples/cp-clone.c

Let’'s Try to Write a cp Clone

The source file is located in the materials repository at:
lectures/01-why-computer-systems-programming/examples/cp-clone.c

At the comment, we might add the following optimization:
(stat.st_size == 08) {
g;
}

SO we can avoid any unnecessary read calls

However, this breaks copying “files” like /proc/cpuinfo

23


https://github.com/compeng-gg/2024-fall-ece454-materials/blob/main/lectures/01-why-computer-systems-programming/examples/cp-clone.c

How Do You Know an Optimization is Premature?

This is a bit trickier to answer...

What's the purpose of the program? Are you only going to use it once?
It likely doesn't matter

Are you optimizing the bottleneck?
If not, you don't need to waste time

Are you optimizing the common case or special case?
If it's the special case, you don't need to worry

What price am | paying?
Develop productivity? Readability? Program size?

24



What You Want to Avoid

// When I wrote this, only God and I understood what I was doing

// Now, God only knows

//

/] Therefore if you are trying to optimize this routine and it fails
// (most surley), please increase this counter as a warning for the
/] next person:

//

// total_hours_wasted_here = 254

25



The Easiest Way to Measure Performance—Speedup

We're used to latency, how long does it take to do a task

Lo
LneW

Slatency =

where,
Siatency IS the speedup (in terms of latency)
Loiq is the latency of the old task
Lnew is the latency of the new task

26



The Easiest Way to Measure Performance—Speedup

We're used to latency, how long does it take to do a task

Lo
LneW

Slatency =

where,
Siatency IS the speedup (in terms of latency)
Loiq is the latency of the old task
Lnew is the latency of the new task

For example: our original task takes 1 second to complete,
then we optimize it to 0.5 seconds Ly g = 18
Lnew = 0.53

L 1s
then, Slatency = L:SI:, = 058 = 2

26



You Can Measure the Latency of an Exectable with time

You can use /usr/bin/time -p <executable> (not time the shell built-in),
an example of the output is:

real 159.98
user 0.21
sys 3.26

real is the number of seconds that actually passed (wall time)

user is the number of seconds all cores execute for in user mode
(for multicore this can be greater than real)

sys is the number of seconds all cores execute for in kernel mode

217



We Also Want to Consider Throughput

Throughput is the number of tasks you can do per unit time
Q="

where,
Q is the throughput
P is the number of tasks you can do simultaneously
L is the latency of a single task

28



Airplanes as a Real Life Example

M ETIE YYZ > FRA Passengers
Airbus 8 hours 470
Concorde 4 hours 132

Which plane has better performance?

Any other real life examples you can think of?

29



Let's Consider a Webserver Handling Requests Serially

Runtime

d N
)l L

Assume we buy a faster CPU, we'll have
higher throughput and lower latency

This is a positive correlation

30



Now the Webserver Handles Requests Parallelly

Runtime

A
A 4

turns into

Runtime

A
A 4

Latency is worse (larger), but throughput is higher

This is a negative correlation

31



There are Limits—Amdahl’s Law

The law states that overall speedup you achieve
depends on the fraction you can speedup

Let p be the proportion of the task you can speedup
Let s be the speedup of that proportion

Slatency (s) = m

32



There are Limits—Amdahl’s Law

The law states that overall speedup you achieve
depends on the fraction you can speedup

Let p be the proportion of the task you can speedup
Let s be the speedup of that proportion

Slatency (s) = m

which means:
1
SIatency(s) < 1-p

. 1
slggo Slatency(s) = -

I-p

In other words, if you can speed up 90% of your code (p = 0.9),

the best overall speed you can achieve is 10

Ky



An Example Using Amdhal’s Law

If an optimization makes loops go 3 times faster,
and my program spends 70% of its time in loops,
how much faster will my program go?

33



There's Other PerformanceConsiderations

Utilization, Goodput (only measure useful data), Jitter (consistency)
Do we care about the best case, worse case, or average case?

Performance evlauation is an active field of research

34



Experience

Goose farmer
Self-employed

Jul 2023 - Present - 1yr 2 mos
On-site

Microsoft
22 yrs 4 mos

Principal Performance Architect
Full-time

Jul 2022 - Jul 2023 - 1yr 1 mo

Chehalis, Washington, United States - Remote

Principal Software Development Engineer
Apr 2001 - Jul 2022 - 21 yrs 4 mos
Redmond WA

35



We'll Use C++ in the Course

Why would you want to use C++? The most illustrative example is sorting

What's faster, and why? What is easier to read?
1. Using gsortin C
2. Using a hand written sortin C
3. Using sort in C++ with an array
4. Using sort in C++ with a std: :vector

36



