
Virtual Memory

and Prefetching

2024 Fall ECE454: Computer Systems Programming

Jon Eyolfson

Lecture 10

1.1.0

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/


Each Process UsesVirtualMemory

They believe they have access to the entire address range

(no matter the amount of physical memory)

The kernel divides physical memory into pages

(typically 4 KiB aligned blocks of memory)

The kernel maps virtual pages to physical pages

1



TheKernelManagesVirtualMemory Through Page Tables

2



Benefits of VirtualMemory

Decouples the memory a process uses from physical memory

The kernel can share memory implicitly (through copy-on-write)

or explicitly (through shared memory)

It’s lazy, the kernel allocates a physical page

when you first use a virtual page

If you run out of physical memory, the kernel

can move pages to swap space on disk

3



The TLB is a Cache for Virtual Address Lookups

4



The TLB is Typically Integratedwith L1/L2Cache

This cache significantly speeds up virtual memory access

Typically the TLB can store enough entries to translate everything in cache

(you will have a performance issue if every access is a new page)

≈ 64 L1 TLB entries, 2048 L2 TLB entries

The amount of memory you can access using TLB entries is called TLB reach

5



ProgrammingwithVirtualMemory inMind

Your working set is the number of pages your program

needs to execute a portion of instructions

If your working set is greater than your TLB reach

TLB misses occur, which may cause many memory accesses

If your working set is greater than the total amount of memory,

pages swap to disk in and out continuously (thrashing)

6



The Typical ProcessAddress Space Layout

7



The sbrkSystemCallModifies theHeap

You’ll be using a simulated version of this for Lab 3

This system call increments the heap by the specified number of bytes

This heap space is what malloc and friends use

8



YouCanAlsoMapMemoryYourself

A more flexible system call is mmap

You can initialize virtual memory with the contents of a file

You can share memory across processes

9



TheKernel CanUseHugepages

A 39 bit virtual address space requires 3 levels of page tables,

most processors use 48 bits (4 levels)

One approach is to use the L1 page table to point to a 2 MiB page

You can also use the madvise system call to give hints about memory usage

MADV_SEQUENTIAL allows freeing pages after use

MADV_HUGEPAGE to enable huge pages for an address range

10



PrefetchingGivesHints onMemory Loads/Stores

inst1

inst2

inst3

inst4

load X

inst5

inst1

prefetch X

inst2

inst3

inst4

load X

inst5

cache miss latency

If effective, it helps tolerate latency to memory

11



Prefetching is Difficult

It’s only effective if ALL the following is true:

There is spare memory bandwidth

Otherwise prefetching can cause bandwidth bottleneck

Prefetching is accurate

Only useful if the prefetched data will be used soon

Prefetching is timely

i.e., prefetch the right data, but not enough in advance

Prefetched data doesn’t displace other in-use data

e.g., prefetched data should not replace a cache block about to be used

Latency hidden by prefetching outweighs its cost

Cost of lots of useless prefetched data can be significant

12



There’s Hardware Prefetching

A simple hardware prefetcher could fetch the adjacent block,

this makes it behave like cache blocks are twice as big

(this also helps with unaligned instructions)

A more complex prefetcher can recongize stride

stride is how many bytes are between addresses

For example, if you access a+0, a+128, a+256, the stride is 128

(prefetch addresses a+stride*j)

Real prefetchers are proprietary, you don’t know the details

13



YouCanAdd Prefetching Instructionswith CCompilers

You can use: __builtin_prefetch (const void *addr[, rw[, locality]])

where,

addr is the address to prefetch

rw (optional)

0 (default): read

1: write

locality (optional)

0 none

1 low (leave in L3)

2 medium (leave in L2)

3 (default): high (leave in L1)

14



Example Using Binary Search

Check the examples directory and run

./perf-wrapper.py all 1000000000 10000

binsearch-base:

Cycles per element: 4818.37

L1d load miss rate: 30.38%

Misses: 718_791

Loads: 2_365_832

binsearch-prefetch:

Cycles per element: 4132.07

L1d load miss rate: 52.08%

Misses: 763_769

Loads: 1_466_656

15



Large Binary Searchwith Hugepages

Now enable hugepages and try running

./perf-wrapper.py all 1000000000 10000

binsearch-base:

Cycles per element: 2845.73

L1d load miss rate: 50.29%

Misses: 965_891

Loads: 1_920_571

binsearch-prefetch:

Cycles per element: 2189.47

L1d load miss rate: 90.98%

Misses: 923_175

Loads: 1_014_736

16



Takeaways

For cache, focus on either L1 or L2 depending on required working-set size

try to make sure your working set can fit in cache

For virtual memory, keep your working set on as few pages as possible

TLB misses will slow down your program

For prefetching, make sure your accesses are sequential/strided,

if you know the next access that may seem random, use the compiler

17


