
ECE 459: Programming for Performance
Assignment 1

Jon Eyolfson

January 13, 2012 (Due: January 30, 2012)

Background

For this assignment, we’ll be parallelizing the Monte Carlo Estimation for Pi. It’s a crude
estimation that works by generating a bunch of random numbers between [0, 1]. Consider a 1 × 1
square with a quarter circle enclosed within.

We can estimate π by using a bunch of random points and seeing how many are contained within
the quarter circle. We pick two random numbers x and y, check if x2 + y2 ≤ 1, and if it does we
record it. If we pick i random points, and c falls within the quarter circle. We can estimate π by
simply calculating 4 · c

i
(since the area ratio of the quarter circle to the sqaure is π

4
). The program

will generate i random points, determine c by calculating how many are enclosed in the quarter
circle and finally output π.

Setup

Download the provided assignment code from http://ece459.eyolfson.com/media/assignments/

provided-assignment-01.tar.gz and untar it using the tar xzvf assignment-01.tar.gz com-
mand.

You should do this assignment in Linux, as the provided Makefile was only tested on Linux and
isn’t very robust. Since we’re testing parallel execution, you may not want to use a virtual machine
and instead run it natively (most free ones don’t support multiple CPUs well). You of course can
use the course machine, ece459-1.uwaterloo.ca, just e-mail me with your uwaterloo.ca address
for ssh access. I tested everything on this system, so everything should be working. Just in case
you want to make sure you setup is the same, I used gcc 4.6.2 and glibc 2.15. Make sure to
use the optimization flag -O2, or you may get some weird results.

1

http://ece459.eyolfson.com/media/assignments/provided-assignment-01.tar.gz
http://ece459.eyolfson.com/media/assignments/provided-assignment-01.tar.gz


Part 1 - Programming (60 marks)

Use the pthread library create a threaded version of the provided program. All of your parallel code
should be within the #ifdef PARALLEL sections. Your program should create as many threads as
the num threads variable (which reads the value from the -t command line option). As a reminder,
you should make sure all of your external calls are thread-safe (for example, man 3 rand to look at
the documentation). Edit: turns out rand is a lot slower than rand r, so the sequential
version actually uses rand r so your comparsions make sense. You should still get use
to looking up thread-safe calls. Also, do not change the fundamental algorithm (as bad as it may
be), since we want the same amount of done in the sequential and parallel versions.

Part 2 - Benchmarking (40 marks)

Run the sequential version with the number of iterations (set with the -i option) is sufficient for
the program to run for at least 10 seconds. You may use the time command to benchmark your
program. Run it at least 6 times and record the average. Assuming the code is 100% parallel,
predict its runtime running on the number of physical cores in your system (4 for ece459-1, and
should be at least 2). Explicitly state the number of physical cores in the machine. Next, run your
parallel version with the same number of iterations and the amount of threads set to the number
of physical cores in your system. Run this at least 6 times and record the average. Is your parallel
runtime approximately equal to your predicted runtime? Write a few sentences describing why or
why not your results agree with what you predicted.

Finally, if your CPU has hyperthreading, set the number of threads equal to the number of
virtual CPUs, run your benchmark again 6 times and record the average. Calculate the speedup
and verify it is less than the number of virtual CPUs. Now, set the number of threads equal to one
more than the number of virtual CPUs (this will be the same as the number of physical cores if you
don’t have hyperthreading). Calculate the speedup and compare it to using an equal number of
threads as virtual CPUs. Which performs better? Write a few sentences explaining any similarities
or differences.

Submitting

Keep the same folder structure you were given. Archive in tar.gz format (or zip if you must) the
assignment-01 folder. It should contain the following in that folder: Makefile, src/montecarlo.c
and report.pdf (you can modify the provided report/report.tex and create it with make report).
After running make in the assignment-01 folder it should produce two files, bin/montecarlo and
bin/montecarlo parallel in that folder. When completed, submit your archive on the course
website, http://ece459.eyolfson.com/ after logging in.

http://ece459.eyolfson.com/

