
ECE 459: Programming for Performance
Assignment 2

Jon Eyolfson

February 5, 2012 (Due: February 27, 2012)

Important Notes:

• Make sure your working directory is called “assignment-02”

• Make sure you run your program on ece459-1.uwaterloo.ca

• Use the command “OMP NUM THREADS=4;export OMP NUM THREADS” to set 4 threads

• The guidelines were set by running on ece459-1 with 4 threads

• Run “make report” and “make tar” and submit your tar.gz file

• Make sure the image from parts 1 and 2 are the same as the sequential version

Automatic Parallelization (40 marks)

Benchmark your sequential program with the number of iterations (-i) such that the execution time
is approixmately 10 seconds. On ece459-1 I used -i 9001 (it’s over 9000!) to get the intended
runtime.

Your first task is to modify your program so you can take advantage of automatic parallelization
(do not make any major changes). Make all your changes to mandelbrot auto.c. I put
SolarStudio 12.3 on ece459-1 and use that compiler with the relevant flags in the Makefile. Your
output when completed should look something like the following (the line numbers don’t have to
match, but the first outermost loop should be parallelized):

Compiling Part 1 Automatic P a r a l l e l i z a t i o n
/opt/ o r a c l e / s o l a r i s s t u d i o 1 2 .3/ bin / cc −O3 −xautopar −x l oop in f o s r c /mandelbrot auto . c

−o bin /mandelbrot auto
” s r c /mandelbrot auto . c ” , l i n e 13 : not p a r a l l e l i z e d , loop has mu l t ip l e e x i t s
” s r c /mandelbrot auto . c ” , l i n e 40 : PARALLELIZED
” s r c /mandelbrot auto . c ” , l i n e 41 : not p a r a l l e l i z e d , not p r o f i t a b l e
” s r c /mandelbrot auto . c ” , l i n e 50 : not p a r a l l e l i z e d , loop has mu l t ip l e e x i t s
. . .

Clearly and concisely explain your changes. Explain why the code would not parallelize initially
and why your changes are correct and preserve the behaviour of the sequential version. Run your
benchmark again, using the same -i and calculate your speedup. Explain why the speedup is so
poor (keep it mind in the next part the speedup will be greater than 3.5).

• Minimum expected speedup: 2

• Initial solution speedup: 2.3

1



Manual Parallelization with OpenMP (30 marks)

Now, it’s time to show the compiler who’s boss. Copy your mandelbrot auto.c file over to
mandelbrot omp.c. Now, using only OpenMP pragma’s increase the performance of the program
over automatic parallelization. Benchmark your manual parallelization with OpenMP and calculate
the speedup over the sequential version. Using your explanation from part 1 (as to why the perfor-
mance was so bad) explain why your manual parallelization so drastically improved performance.
Be clear and concise.

• Minimum expected speedup: 3.5

• Initial solution speedup: 3.7

Using OpenMP Tasks (30 marks)

We saw briefly how OpenMP tasks allow us to easily express some parallelisms. In this part, we
apply OpenMP tasks to the naive Fibonacci number function. Benchmark the sequential version
with a number that executes in approximately 10 seconds (47 on ece459-1, sadly not 42). Now, try
to run the provided version with OpenMP tasks (let it run for at least 20 seconds to prove a point,
let it run to completion to drive the point home), it should be much slower than the sequential
version. Clearly and concisely explain why the performance is so dreadful.

Next, we’ll modify the code so there’s actually a speedup. Without modifying the naive calcu-
lation (it has to remain recursive with no caching, etc) make it so you get some improvement. A
Google search reveals that a cutoff that decides whether or not to create tasks should work. The
only modifications in this case should be a variable and an if statement. Benchmark your modi-
fied program and calculate the speedup. Clearly and concisely explain why your changes improved
performance.

• Minimum expected speedup: 1

• Initial solution speedup: 1.33 (1.75 on my laptop)

Setup

Same as Assignment 1, the provided material is avaiable here: http://ece459.eyolfson.com/

media/assignments/provided-assignment-02.tar.gz. Please use the provided Makefile and
do not modify it. Grading will be done running make, running your programs, looking at the source
code and reading the report.

http://ece459.eyolfson.com/media/assignments/provided-assignment-02.tar.gz
http://ece459.eyolfson.com/media/assignments/provided-assignment-02.tar.gz

