
Lecture 01 - Introduction
ECE 459: Programming for Performance

Jon Eyolfson

University of Waterloo

January 4, 2012



Administration Overview Evaluation

Course Website

http://ece459.eyolfson.com/

If the website is down, it may be due to moving the domain

2011 Website: http://www.patricklam.ca/p4p/

Lecture 01 - Introduction University of Waterloo

http://ece459.eyolfson.com/
http://www.patricklam.ca/p4p/


Administration Overview Evaluation

Staff

Instructor
Jon Eyolfson jeyolfso@uwaterloo.ca DC 2553

Teaching Assistants
Shay Berkovich sberkovi@uwaterloo.ca E5 4124
Mohammad Rostami m2rostam@uwaterloo.ca EIT 3137

Lecture 01 - Introduction University of Waterloo

mailto:jeyolfso@uwaterloo.ca
mailto:sberkovi@uwaterloo.ca
mailto:m2rostam@uwaterloo.ca


Administration Overview Evaluation

Schedule

Lectures: January 4 - April 2, MWF, 10:30 AM, DWE 3522

Tutorials: January 6 - March 30, F, 1:30 PM, DWE 3522

Midterm: March 2, F, 6:30 PM, RCH 105/110 (tentatively)

Lecture 01 - Introduction University of Waterloo



Administration Overview Evaluation

Office Hours

• Open vote

• Likely sometime after each lecture?

Lecture 01 - Introduction University of Waterloo



Administration Overview Evaluation

Textbook

Multicore Application Programming For Windows, Linux, and
Oracle Solaris. Darryl Gove. Addison-Wesley, 2010.

Lecture 01 - Introduction University of Waterloo



Administration Overview Evaluation

Goal

• To make programs run faster!

“T-T-T-TODAY, JUNIOR!”

Lecture 01 - Introduction University of Waterloo



Administration Overview Evaluation

Making Programs Faster

• There are two main ways

• Increase bandwidth (tasks per unit time)

• Decrease latency (time per task)

• Examples of bandwidth/latency:
Network (connection speed/ping), Traffic (lanes/speed)

Lecture 01 - Introduction University of Waterloo



Administration Overview Evaluation

Our Focus

• Primarily on increasing bandwidth (more tasks per unit time)

• Do tasks in parallel

• Decreasing the amount of time per task usually more difficult
with lower gains

• Trends for CPUs have been going towards more cores rather
than raw speed

Lecture 01 - Introduction University of Waterloo



Administration Overview Evaluation

Parallelism

• Some tasks are easy to run in parallel

• Examples: computer graphics, brute-force searches, and
genetic algorithms

• Others are more difficult

• Examples: simple linked list traversal, why?

Lecture 01 - Introduction University of Waterloo



Administration Overview Evaluation

Hardware

• Use pipelining (all moderns CPU do this)
• Implement this in software by spliting a task into subtasks and

running the subtasks in parallel

• Obviously, we can increase the number of cores/CPUs

• Run problem on multiple connected machines

• Use specialized hardware, such as a GPU which contains
hundreds of simple cores

Lecture 01 - Introduction University of Waterloo



Administration Overview Evaluation

Difficulties

• Independent tasks are trivial to parallelize, dependencies cause
problems

• Unable to start task until previous task runs to completion

• May require synchronization and combination of results

• More difficult to reason about, since execution may happen in
any order

Lecture 01 - Introduction University of Waterloo



Administration Overview Evaluation

Limitations

• Sequential tasks in the problem will always dominate
maximum performance

• Some sequential problems may be parallelizable by
reformulating the implementation

• However, no matter how many processors you have, you won’t
be able to speed up the program as a whole (known as
Amdahl’s Law)

Lecture 01 - Introduction University of Waterloo



Administration Overview Evaluation

Data Race

• Two processors accessing the same data

• For example, consider the following code:
x = 1
print x
You run it and see it prints 5

• Why? Before the print, another thread wrote a new value for
x, this is an example of a data race

Lecture 01 - Introduction University of Waterloo



Administration Overview Evaluation

Deadlock

• Two processors trying to access a shared resource

• Consider two processors trying to get two resources:
Processor 1
Get Resource 1
Get Resource 2
Release Resource 2
Release Resource 1

Processor 2
Get Resource 2
Get Resource 1
Release Resource 1
Release Resource 2

• Processor 1 gets Resource 1, then Processor 2 gets Resource
2, now they both wait for eachother (deadlock)

Lecture 01 - Introduction University of Waterloo



Administration Overview Evaluation

Objectives

• Implementation of parallel programming involving
synchronization

• Understanding of parallel computing frameworks

• Ability to investigate software and improve its performance

• Specialized GPU programming/programming languages

Lecture 01 - Introduction University of Waterloo



Administration Overview Evaluation

Assignments

1 Manual parallelization using Pthreads

2 Automatic parallelization and OpenMP

3 Application profiling and improvement (groups of 2)

4 GPU programming

Lecture 01 - Introduction University of Waterloo



Administration Overview Evaluation

Breakdown

• 40% Assignments (10% each)

• 10% Midterm

• 50% Final

Lecture 01 - Introduction University of Waterloo



Administration Overview Evaluation

Grace Days

• 4 grace days to use over the semester for late assignments

• No mark penalty for using grace days

• Try not to use them just because they’re there

Lecture 01 - Introduction University of Waterloo



Administration Overview Evaluation

Suggestions?

• Just let me know

Lecture 01 - Introduction University of Waterloo


	Administration
	Overview
	Evaluation

