
Lecture 10 - OpenMP Basics
ECE 459: Programming for Performance

Jon Eyolfson

University of Waterloo

January 25, 2012

Course Comments

• Overwhelmingly you think the mic should be fixed

• Pace seems fine

• Some interest in good practices / other techniques

• Assignment 1 is probably too easy

• Probably keep things more or less the same

Lecture 10 - OpenMP Basics University of Waterloo

Assignment 1

• Don’t worry about the quality of the result

• Worry about parallelizing the code

• Mainly for pthread experience and benchmarking results

• Don’t be afraid to remove stuff from the tex file if it’s not
needed

Lecture 10 - OpenMP Basics University of Waterloo

Assignment 1 Improvement

@@ −8,11 +8 ,10 @@
s t a t i c uns i gned long i n t i t e r a t i o n s = 0 ;
s t a t i c uns i gned long i n t count = 0 ;

−uns i gned long i n t monteca r l o (uns i gned long i n t i t e r a t i o n s)
+uns i gned l ong i n t monteca r l o (uns i gned long i n t i t e r a t i o n s ,

un s i gned i n t seed)
{

uns i gned long i n t i , c = 0 ;
doub l e x , y , z ;

− uns i gned i n t seed = 1 ;

f o r (i = 0 ; i < i t e r a t i o n s ; ++i) {
x = (doub l e) r a n d r (& seed)/RAND MAX;

@@ −69,7 +68 ,7 @@ i n t main (i n t argc , cha r ∗ a rgv [])
// I n s e r t your code below
#e l s e
// S e r i a l c a l c u l a t i o n o f p i

− count += monteca r l o (i t e r a t i o n s) ;
+ count += monteca r l o (i t e r a t i o n s , 1) ;

#e n d i f

Lecture 10 - OpenMP Basics University of Waterloo

Introduction

Now that we’ve seen automatic parallelization, let’s talk about
manual parallelization using OpenMP.

• OpenMP (Open Multi-Processing) is an API specification
which allows you to tell the compiler how you’d like your
program to be parallelized

• Implementations are present in all major compilers (GNU,
Solaris, Intel, Microsoft)

You use OpenMP1 by specifying directives in the source code. In
C/C++, these directives are pragmas of the form
#pragma omp ...

1More information: https://computing.llnl.gov/tutorials/openMP/
Lecture 10 - OpenMP Basics University of Waterloo

https://computing.llnl.gov/tutorials/openMP/

Benefits

Here are some benefits of the OpenMP approach:

• OpenMP uses compiler directives
• Easily compile a serial or parallel version

• OpenMP’s approach also separates the parallelization
implementation from the algorithm implementation

• The directives apply to limited parts of the code, thus
supporting incremental parallelization of the program

Lecture 10 - OpenMP Basics University of Waterloo

Example

Let’s look at a simple example:
vo id c a l c (double ∗ ar ray1 , double ∗ ar ray2 , i n t l e n g t h) {

#pragma omp p a r a l l e l f o r
f o r (i n t i = 0 ; i < l e n g t h ; i ++) {

a r r a y 1 [i] += a r r a y 2 [i] ;
}

}

Could we parallelize this automatically?

Lecture 10 - OpenMP Basics University of Waterloo

Operation

• #pragma will make the compiler parallelize the loop

• It does not look at anything inside the loop, only the loop
bounds

• It is your responsibility to make sure the code is safe

• The pointers should be declared as restrict in the example
for automatic parallelization

OpenMP will always start parallel threads if you tell it to, dividing
the iterations contiguously among the threads.

Lecture 10 - OpenMP Basics University of Waterloo

Basic pragma

Let’s look at the parts of this #pragma.

• #pragma omp indicates an OpenMP directive

• parallel indicates the start of a parallel region

• for tells OpenMP to run the following for loop in parallel

When you run the parallelized program, the runtime library starts
up a number of threads and assigns a subrange of the loop range
to each of the threads.

Lecture 10 - OpenMP Basics University of Waterloo

Restrictions

OpenMP places some restrictions on loops that it’s going to
parallelize:

• the loop must be of the form:
for (init expr; test expr; increment expr);

• the loop variable must be integer (signed or unsigned),
pointer, or a C++ random access iterator

• the loop variable must be initialized to one end of the range
• the loop increment amount must be loop-invariant (constant

with respect to the loop body)
• the test expression must be one of >, >=, <, or <=, and the

comparison value (bound) must be loop-invariant
Note: these restrictions therefore also apply to automatically
parallelized loops

Lecture 10 - OpenMP Basics University of Waterloo

Runtime Effect

• the compiler generates code to spawn a team of threads and
automatically splits off the worker-thread code into a separate
procedure

• code uses fork-join parallelism, so when the master thread
hits a parallel region it gives work to the worker threads,
which execute and report back

• After the master thread continues running, while the worker
threads wait for more work

As we saw, you can specify the number of threads by setting the
OMP_NUM_THREADS environment variable (you can also adjust by
calling omp_set_num_threads())

• Solaris compiler can tell you what it did by using the flags
-xopenmp -xloopinfo

Lecture 10 - OpenMP Basics University of Waterloo

Default Variable Scoping

• We are familiar with the concept of thread-local variables
(private) and shared variables

• Changes to private variables are visible only to the changing
thread

• Changes to shared variables are visible to all threads
Let’s look at the defaults that OpenMP uses to parallelize the
calc code:
% e r s r c p a r a l l e l −f o r . o

1 . <Funct i on : ca l c>

Source OpenMP r e g i o n below has tag R1
P r i v a t e v a r i a b l e s i n R1 : i
Shared v a r i a b l e s i n R1 : a r ray2 , l eng th , a r r a y 1

2 . #pragma omp p a r a l l e l f o r
3 . f o r (i n t i = 0 ; i < l e n g t h ; i ++) {
4 . a r r a y 1 [i] += a r r a y 2 [i] ;
5 . }
6 . }

Lecture 10 - OpenMP Basics University of Waterloo

Variable Scoping

• It would be fine for the length variable to be either shared or
private, but if it was private, then you would have to copy in
the appropriate initial value

• array variables have to be shared
Summary of default rules:

• Loop variables are private
• Variables defined in parallel code are private
• Variables defined outside the parallel region are shared

You can disable the default rules by specifying default(none) on
the parallel pragma, or you can give explicit scoping:
#pragma omp p a r a l l e l f o r p r i v a t e (i) sha r ed (l eng th , a r ray1 ,

a r r a y 2)

Lecture 10 - OpenMP Basics University of Waterloo

Reductions

Recall that we introduced the concept of a reduction, e.g.
f o r (i n t i = 0 ; i < l e n g t h ; i ++)

t o t a l += a r r a y [i] ;

What is the appropriate scope for total? Well, it should be shared
• We want each thread to be able to write to it
• But, is there a race condition? (of course)

Fortunately, OpenMP can deal with reductions as a special case:
#pragma omp p a r a l l e l f o r r e d u c t i o n (+: t o t a l)

specifies that the total variable is the accumulator for a reduction
over +

Lecture 10 - OpenMP Basics University of Waterloo

Accessing Private Data outside a Parallel Region

Sometimes you want private variables, but want them initialized
before the loop
Consider this silly code:
i n t data =1;

#pragma omp p a r a l l e l f o r p r i v a t e (data)
f o r (i n t i = 0 ; i < 100 ; i ++)

p r i n t f (” data=%d\n” , data) ;

• data is private, so OpenMP will not copy it
• To make OpenMP copy the data before the threads start use

firstprivate(data)
• To set a variable equal to the last iteration of the loop, use

lastprivate(data)

Lecture 10 - OpenMP Basics University of Waterloo

Thread-Private Data

• You could have a global variable which you want to make
local to each thread

• You can do this with the threadprivate directive

• Use copyin directive if you want something like
firstprivate

• There is no lastprivate since the data is accessible after
the loop

Lecture 10 - OpenMP Basics University of Waterloo

Thread-Private Data Example (1)

#i n c l u d e <omp . h>
#i n c l u d e <s t d i o . h>

i n t t i d , a , b ;

#pragma omp t h r e a d p r i v a t e (a)

i n t main (i n t argc , cha r ∗ a rgv [])
{

p r i n t f (” P a r a l l e l #1 S t a r t \n ”) ;
#pragma omp p a r a l l e l p r i v a t e (b , t i d)
{

t i d = omp get thread num () ;
a = t i d ;
b = t i d ;
p r i n t f (”T%d : a=%d , b=%d\n ” , t i d , a , b) ;

}

p r i n t f (” S e q u e n t i a l code\n ”) ;

Lecture 10 - OpenMP Basics University of Waterloo

Thread-Private Data Example (2)

p r i n t f (” P a r a l l e l #2 S t a r t \n ”) ;
#pragma omp p a r a l l e l p r i v a t e (t i d)
{

t i d = omp get thread num () ;
p r i n t f (”T%d : a=%d , b=%d\n ” , t i d , a , b) ;

}

r e t u r n 0 ;
}

% . / a . out
P a r a l l e l #1 S t a r t
T6 : a=6, b=6
T1 : a=1, b=1
T0 : a=0, b=0
T4 : a=4, b=4
T2 : a=2, b=2
T3 : a=3, b=3
T5 : a=5, b=5
T7 : a=7, b=7

S e q u e n t i a l code
P a r a l l e l #2 S t a r t
T0 : a=0, b=0
T6 : a=6, b=0
T1 : a=1, b=0
T2 : a=2, b=0
T5 : a=5, b=0
T7 : a=7, b=0
T3 : a=3, b=0
T4 : a=4, b=0

Lecture 10 - OpenMP Basics University of Waterloo

Collapsing Loops

• Normally, it’s best to parallelize the outermost loop
Consider this code:
#i n c l u d e <math . h>
i n t main () {

double a r r a y [2] [1 0 0 0 0] ;
#pragma omp p a r a l l e l f o r c o l l a p s e (2)
f o r (i n t i = 0 ; i < 2 ; i ++)

f o r (i n t j = 0 ; j < 10000 ; j++)
a r r a y [i] [j] = s i n (i+j) ;

r e t u r n 0 ;
}

• Would parallelizing this outer loop benefit us? The inner loop?
OpenMP supports collapsing loops

• Creates a single loop for all the iterations of the two loops
• Outer loop only enables the use of 2 threads
• Collapsed look lets us use up to 20,000 threads

Lecture 10 - OpenMP Basics University of Waterloo

Better Performance Through Scheduling Example
Default mode: Static scheduling

• Assumes each iteration takes the same amount of time to run
Does that assumption hold for this code?
double c a l c (i n t count) {

double d = 1 . 0 ;
f o r (i n t i = 0 ; i < count ∗ count ; i ++) d += d ;
r e t u r n d ;

}

i n t main () {
double data [2 0 0] [1 0 0] ;
i n t i , j ;

#pragma omp p a r a l l e l f o r p r i v a t e (i , j) s ha r ed (data)
f o r (i n t i = 0 ; i < 200 ; i ++) {

f o r (i n t j = 0 ; j < 200 ; j++) {
data [i] [j] = c a l c (i+j) ;

}
}
r e t u r n 0 ;

}

Lecture 10 - OpenMP Basics University of Waterloo

Better Performance Through Scheduling

• Earlier iterations are faster than later iterations

• You can use the dynamic schedule mode by adding
schedule(dynamic) to the pragma

• Breaks the work into chunks

• Distributes the work to each thread in chunks

• Requires more overhead

• Default chunk size of 1, can modify

Lecture 10 - OpenMP Basics University of Waterloo

More Scheduling

Other modes, such as guided, auto and runtime

• guided changes the chunk size based on the amount of work
remaining

• Minimum chunk size defaults to 1, can modify
• auto lets OpenMP decide what’s best
• runtime doesn’t pick a mode until the program actually runs

• Changed with the OMP_SCHEDULE environment variable

Lecture 10 - OpenMP Basics University of Waterloo

