Lecture 12 - Advanced OpenMP

ECE 459: Programming for Performance

Jon Eyolfson

University of Waterloo

January 30, 2012

Last Lecture

= Main concepts
= parallel
= for (ordered)
= sections
= single
= master
= Synchronization
= barrier
= critical
= atomic

= Data sharing: private, shared, threadprivate

Lecture 12 - Advanced OpenMP University of Waterloo

Memory Model

OpenMP uses a relaxed-consistency, shared-memory model

= All threads have a single place to store/load variables called
memory (may not actually represent RAM)

= Each thread can have it's own temporary view of memory

= A thread’s temporary view of memory is not required to be
consistent with memory

Lecture 12 - Advanced OpenMP University of Waterloo

Example Preventing Simultaneous Execution

a=b=0
/* thread 1 =/ /* thread 2 =/
atomic(b = 1) // [1] atomic(a = 1) // [3]
atomic(tmp = a) // [2] atomic(tmp = b) // [4]
if (tmp = 0) then if (tmp = 0) then
// protected section // protected section
end if end if

= Does this code actually prevent simultaneous execution?

Lecture 12 - Advanced OpenMP University of Waterloo

Example Preventing Simultaneous Execution

a=b=0
/* thread 1 %/ /* thread 2 x/
atomic(b = 1) // [1] atomic(a = 1) // [3]
atomic(tmp = a) // [2] atomic(tmp = b) // [4]
if (tmp = 0) then if (tmp == 0) then
// protected section // protected section
end if end if
Order tl tmp t2 tmp
1 2 3 4 0 1
1 3 2 4 1 1
1 3 4 2 1 1
3 4 1 2 1 0
31 2 4 1 1
31 4 2 1 1

= Well, yes it does (at least intuitively)

Lecture 12 - Advanced OpenMP University of Waterloo

Example Preventing Simultaneous Execution

a=b=0
/* thread 1 x/ /* thread 2 x/
atomic(b = 1) // [1] atomic(a = 1) // [3]
atomic(tmp = a) // [2] atomic(tmp = b) // [4]
if (tmp = 0) then if (tmp = 0) then
// protected section // protected section
end if end if

= With OpenMP’s memory model however, this is incorrect

= The update from one thread may not be seen by the other

Lecture 12 - Advanced OpenMP University of Waterloo

#pragma omp flush [(list)]

= Makes the thread’s temporary view of memory consistent with
main memory

= Enforces an order on the memory operations of the variables

= The variables in the list are called the flush-set, if none are
given the compiler will determine them for you

Lecture 12 - Advanced OpenMP University of Waterloo

Flush, In Other Words

Enforcing an order on the memory operations means:

= All read/write operations that are in the flush-set and happen
before to the flush complete before the flush executes

= All read/write operations that are in the flush-set and happen
after to the flush complete after the flush executes

= Flushes with overlapping flush-sets can not be reordered

Lecture 12 - Advanced OpenMP University of Waterloo

Flush Correctness

In order to see a consistent value for a variable between two
threads, this order must happen:

@ The value is written to the variable by the first thread
® The variable is flushed by the first thread
© The variable is flushed by the second thread

® The value is read from the variable by the second thread

Lecture 12 - Advanced OpenMP University of Waterloo

Same Example, with Flush

/* thread 1 x/

atomic(b = 1)
flush (b)

flush (a)
atomic(tmp = a)

if (tmp = 0) then

end if

// protected section

/* thread 2 x/

atomic(a = 1)
flush (a)
flush (b)
atomic(tmp = b)
if (tmp = 0) then
// protected section
end if

= Are we guaranteed this will prevent simultaneous access now?

Lecture 12 - Advanced OpenMP University of Waterloo

Same Example, with Flush Explanation

No

= The compiler can reorder the flush(b) from thread 1 or
flush(a) from thread 2

= |f flush(b) is reordered after the protected section, we will
not get our intended operation

Lecture 12 - Advanced OpenMP University of Waterloo

Same Example, Now Correct

a=b=20

/* thread 1 x*/ /* thread 2 =/
atomic(b = 1) atomic(a = 1)
flush (a, b) flush(a, b)
atomic(tmp = a) atomic(tmp = b)
if (tmp = 0) then if (tmp = 0) then

// protected section // protected section
end if end if

Lecture 12 - Advanced OpenMP University of Waterloo

Where Flush Isn't Implied

= At entry to for

= At entry to or exit from master
= At entry to sections

= At entry to single

= At exit from for, single or sections, if the nowait clause is
applied to the directive

= nowait removes implicit flush along with the implicit barrier

This is not true for OpenMP versions before 2.5, so be careful

Lecture 12 - Advanced OpenMP University of Waterloo

OpenMP Warning

The program should be able to compile as if the OpenMP
directives are not there

if (al=0)
#pragma omp barrier
if (al= 0)

#pragma omp taskyield

is incorrect, this would be correct:

if (al!=0) {

#pragma omp barrier

}
if (al=0) {
#pragma omp taskyield

Lecture 12 - Advanced OpenMP University of Waterloo

#pragma omp task [clause [[,] clause]*]

= Generates a task for a thread in the team to run
= When a thread enters the region it may:
= immediately execute the task
= defer its execution (any other thread may be assigned the task)
Allowed Clauses: if, final, untied, default, mergeable, private,
firstprivate, shared

Lecture 12 - Advanced OpenMP University of Waterloo

if and final Clauses

if (scalar-logical-expression)
= When the expression is equal to false, an undeferred task is
generated

= The generating task tegion is suspended until execution of the
undeferred task is completed

final (scalar-logical-expression)
= When the expression is equal to true, a final task is generated
= All tasks within a final task are included

= Included tasks are undeferred and execute sequentially

Lecture 12 - Advanced OpenMP University of Waterloo

Example of if and final Clauses

void foo () {

int i;
#pragma omp task if(0) // This task is undeferred
{

#pragma omp task

// This task is a regular task

for (i = 0; i < 3; i++) {

#pragma omp task

// This task is a regular task
bar ();
}
}

#pragma omp task final (1) // This task is a regular task

{

#pragma omp task // This task is

for (i = 0; i < 3; i++) {
#pragma omp task

// This task is also included
bar ();

included

}

Lecture 12 - Advanced OpenMP University of Waterloo

untied and mergeable Clauses

untied
= A task suspended task can be resumed by any thread

= Will be ignored if used with final

mergeable

= The generated task is an undeferred task or an included task
= The implementation might generate a merged task instead

= Allows the implementation to re-use the environment from
another task

Lecture 12 - Advanced OpenMP University of Waterloo

mergeable Example

#include <stdio.h>
void foo () {
int x = 2;
#pragma omp task mergeable

x++; // x is by default firstprivate

#pragma omp taskwait
printf("%d\n",x); // prints 2 or 3

= This is an incorrect usage of mergeable since the output
depends on whether or not the task is merged

= Being able to merge tasks when safe, produces more efficient
code

Lecture 12 - Advanced OpenMP University of Waterloo

Taskyield

#pragma omp taskyield

= Specifies that the current task can be suspended for another
task

Here's an example when it would be good to use:

void foo (omp_lock_t * lock, int n) {
int i;
for (i =0; i <n; i++)

#pragma omp task
something_useful ();
while (lomp_test_lock(lock)) {
#pragma omp taskyield

something_critical ();
omp_unset_lock(lock);

Lecture 12 - Advanced OpenMP University of Waterloo

Taskwait

#pragma omp taskwait

= Waits for the completeion of the child tasks for the current
task

Lecture 12 - Advanced OpenMP University of Waterloo

Traversing a Tree

struct node {
struct node xleft;
struct node xright;

extern void process(struct node x);

void traverse(struct node xp) {

if (p—>left)
#pragma omp task
// p is firstprivate by default
traverse (p—>left);

if (p—>right)
#pragma omp task
// p is firstprivate by default
traverse (p—>right);

process(p);

Lecture 12 - Advanced OpenMP University of Waterloo

Traversing a Tree: Post-Order

struct node {
struct node xleft;
struct node xright;

extern void process(struct node x);

void traverse(struct node xp) {

if (p—=>left)
#pragma omp task
// p is firstprivate by default
traverse (p—>left);

if (p—>right)
#pragma omp task
// p is firstprivate by default
traverse (p—>right);

#pragma omp taskwait

process(p);

= Explicit taskwait before processing

Lecture 12 - Advanced OpenMP University of Waterloo

Parallel Execution for a Linked List

// node struct with data and pointer to next
extern void process(nodex p);

void increment_list_items(node* head) {
#pragma omp parallel

{

#pragma omp single

{

node * p = head;
while (p) {
#pragma omp task
{

process(p);

p = p—>next;

Lecture 12 - Advanced OpenMP University of Waterloo

Lots of Tasks

#define LARGE_NUMBER 10000000
double item [LARGE_NUMBER];
extern void process(double);

int main() {
#pragma omp parallel

#pragma omp single

{
int i;
for (i=0; i<LARGE_NUMBER; i++)
#pragma omp task
// i is firstprivate , item is shared
process(item[i]);
}

= The main loop generates tasks until we're at the limit
= Suspends main thread, finishs some tasks, then restarts the
loop in original thread

Lots of Tasks Improved

#define LARGE_NUMBER 10000000
double item [LARGE_NUMBER] ;
extern void process(double);

int main() {
#pragma omp parallel

{

#pragma omp single

int i;
#pragma omp task untied
{
for (i=0; i<LARGE_NUMBER;
#pragma omp task
process(item[i]);
}

i++)

untied let's another thread create tasks

Lecture 12 - Advanced OpenMP University of Waterloo

Nesting Restrictions

= You cannot nest for regions
= You cannot nest single inside a for
= You cannot nest barrier inside a critical /single/master/for

void good_nesting(int n)
{
int i, j;
#pragma omp parallel default(shared)
{
#pragma omp for
for (i=0; i<n; i++) {
#pragma omp parallel shared(i, n)
#pragma omp for
for (j=0; j < n; j++)
work (i, j);
}
}
}
}

Lecture 12 - Advanced OpenMP University of Waterloo

Performance Considerations

These are things to avoid:

@ Unnecessary flush directive
® Using critical sections or locks instead of the atomic directive

© Unnecessary concurrent memory writing protection

= No need to protect local thread variables
= No need to protect if only access is in single or master

® Too much work in a critical section

® Too many entries to critical sections

Lecture 12 - Advanced OpenMP University of Waterloo

Too Many Entries to Critical Sections

#pragma omp parallel for
for (i = 0; i < N; ++i) {

#pragma omp critical

if (arr[i] > max) max = arr[i];

}

would be better as:

#pragma omp parallel for
for (i =0 ; i <N; ++i) {
#pragma omp flush (max)
if (arr[i] > max) {
#pragma omp critical

if (arr[i] > max) max = arr[i];

Lecture 12 - Advanced OpenMP University of Waterloo

Summary

= Completed our exploration of OpenMP

= How to use flush correctly

= How to use OpenMP tasks to parallelize other problems

Lecture 12 - Advanced OpenMP University of Waterloo

