
Lecture 13 - Memory Ordering and Other Atomic
Operations

ECE 459: Programming for Performance

Jon Eyolfson

University of Waterloo

February 1, 2012

Memory Reordering Atomic Operations Good Practice

Memory Ordering

Memory-consistency can also refer to the order of memory
operations

• Sequential consistency
• No reordering of loads/stores

• Relaxed consistency (only some types of reorderings)
• Loads can be reordered after loads/stores
• Stores can be reordered after loads/stores

• Weak consistency
• Any reordering is possible

Reorderings are done if they look safe in the current context (are
independent)

Lecture 13 - Memory Ordering and Other Atomic Operations University of Waterloo

Memory Reordering Atomic Operations Good Practice

Final Exam Question

x = y = 0

/∗ t h r e a d 1 ∗/ /∗ t h r e a d 2 ∗/
x = 1 ; y = x ;
r1 = y ; r2 = x ;

Assume the architecture is not sequentially consistent (weak
consistency)

Show me all possible (intermediate and final) memory values and
how they arise

Lecture 13 - Memory Ordering and Other Atomic Operations University of Waterloo

Memory Reordering Atomic Operations Good Practice

Final Exam Solution

• You have to go over every permutation of lines (since they
can be in any order)

• Then just over all the values

• Won’t be on this years final, but shows how
memory-reordering could complicate things

Lecture 13 - Memory Ordering and Other Atomic Operations University of Waterloo

Memory Reordering Atomic Operations Good Practice

Compiler Memory Reordering

The compiler may reorder instructions, along with the hardware

Example: we want thread 1 to print a value after thread 2 is done
f = 0

/∗ t h r e a d 1 ∗/ /∗ t h r e a d 2 ∗/
w h i l e (f == 0) ; x = 42 ;
p r i n t f ("%d " , x) ; f = 1 ;

• If thread 2 reorders its instructions, will we get our intended
result?

• No

Lecture 13 - Memory Ordering and Other Atomic Operations University of Waterloo

Memory Reordering Atomic Operations Good Practice

Compiler Memory Reordering

The compiler may reorder instructions, along with the hardware

Example: we want thread 1 to print a value after thread 2 is done
f = 0

/∗ t h r e a d 1 ∗/ /∗ t h r e a d 2 ∗/
w h i l e (f == 0) ; x = 42 ;
p r i n t f ("%d " , x) ; f = 1 ;

• If thread 2 reorders its instructions, will we get our intended
result?

• No

Lecture 13 - Memory Ordering and Other Atomic Operations University of Waterloo

Memory Reordering Atomic Operations Good Practice

Preventing Compiler Memory Reordering

• A memory fence prevents memory operations from crossing
the fence

• Also known as a memory barrier

f = 0

/∗ t h r e a d 1 ∗/ /∗ t h r e a d 2 ∗/
w h i l e (f == 0) ; x = 42 ;
// memory f e n c e // memory f e n c e
p r i n t f ("%d " , x) ; f = 1 ;

• This now prevents any reordering

Lecture 13 - Memory Ordering and Other Atomic Operations University of Waterloo

Memory Reordering Atomic Operations Good Practice

Preventing Compiler Memory Reordering in Programs

• Syntax depends on the compiler

Microsoft Visual Compiler
_ReadWr i t eBar r i e r ()

Intel Compiler
__memory_barrier ()

GNU Compiler
__asm__ __vo la t i l e__ (" " : : : "memory ") ;

Lecture 13 - Memory Ordering and Other Atomic Operations University of Waterloo

Memory Reordering Atomic Operations Good Practice

Aside: gcc Inline Assembly

Just as an aside, here’s gcc’s inline assembly format
__asm__ (a s s e m b l e r t emp la t e

: output ope rands /∗ o p t i o n a l ∗/
: i n p u t ope rands /∗ o p t i o n a l ∗/
: l i s t o f c l o b b e r e d r e g i s t e r s /∗ o p t i o n a l ∗/
) ;

Last slide used volatile as well, however this isn’t the same as
what we’ve seen before, in this context it means:

• The compiler may not reorder this assembly code and put it
somewhere else in the program

Lecture 13 - Memory Ordering and Other Atomic Operations University of Waterloo

Memory Reordering Atomic Operations Good Practice

Hardware Memory Reordering

An AMD64 can reorder stores after loads
• Actual details are beyond the scope of this course

AMD64 class CPUs also have memory fences

Lecture 13 - Memory Ordering and Other Atomic Operations University of Waterloo

Memory Reordering Atomic Operations Good Practice

Preventing Hardware Memory Reordering

Note: these are all asm instructions

mfence
• All loads and stores before the fence finish before anymore

execute

sfence
• All stores before the fence finish before anymore execute

lfence
• All loads before the fence finish before anymore execute

Lecture 13 - Memory Ordering and Other Atomic Operations University of Waterloo

Memory Reordering Atomic Operations Good Practice

Preventing Hardware Memory Reordering (Option 2)

• Some compilers also support preventing hardware reordering

Microsoft Visual Compiler
MemoryBarr ie r () ;

Sun Studio (Oracle) Compiler
__machine_r_barr ie r () ;
__machine_w_barr ier () ;
__machine_rw_barr ier () ;

GNU Compiler
__sync_synchron ize () ;

Lecture 13 - Memory Ordering and Other Atomic Operations University of Waterloo

Memory Reordering Atomic Operations Good Practice

Relevance to OpenMP

• Fortunately an OpenMP flush also preserves the order of
variable accesses

• Stops reordering from both the compiler and hardware

• For GNU, it’s actually just implemented as
__sync_synchronize();

Note: the proper use of memory fences makes volatile not very
useful (again, volatile is not meant to help with threading, and
will have a different behaviour for threading over different
compilers/hardware)

Lecture 13 - Memory Ordering and Other Atomic Operations University of Waterloo

Memory Reordering Atomic Operations Good Practice

Atomic Operations

• We saw the atomic directive in OpenMP

• Most map to hardware instructions that are atomic

• There are other atomic instructions as well...

Lecture 13 - Memory Ordering and Other Atomic Operations University of Waterloo

Memory Reordering Atomic Operations Good Practice

Compare and Swap

Also called compare and exchange (cmpxchg instruction)

i n t compare_and_swap (i n t ∗ reg , i n t o l d v a l , i n t newva l)
{

i n t o l d_reg_va l = ∗ r eg ;
i f (o l d_reg_va l == o l d v a l)

∗ r eg = newval ;
r e t u r n o ld_reg_va l ;

}

• After, you can check if it returned oldval
• If it did, you know you changed it

Lecture 13 - Memory Ordering and Other Atomic Operations University of Waterloo

Memory Reordering Atomic Operations Good Practice

Implementing a Spinlock

This is essentially the spinlock implementation:

v o i d s p i n l o c k _ i n i t (i n t ∗ l) { ∗ l = 0 ; }

v o i d s p i n l o c k _ l o c k (i n t ∗ l) {
w h i l e (compare_and_swap (l , 0 , 1) != 0) {}
__asm__ (" mfence ") ;

}

v o i d s p i n l o c k _ u n l o c k (i n t ∗ i n t) {
__asm__ (" mfence ") ;
∗ l = 0 ;

}

You’ll see cmpxchg quite frequently in the Linux kernel code

Lecture 13 - Memory Ordering and Other Atomic Operations University of Waterloo

Memory Reordering Atomic Operations Good Practice

ABA Problem

• Sometimes you’ll use read a location twice and assume if the
value is the same, nothing has changed

• This is not always true and is an ABA problem
• You can combat this by “tagging”, there is a double compare

and swap which also uses an identifer when swapping

• Just something to be aware of, it won’t be tested

Lecture 13 - Memory Ordering and Other Atomic Operations University of Waterloo

Memory Reordering Atomic Operations Good Practice

Prefix and Postfix

Lots of people use postfix, when really, it should be prefix

In C, this isn’t a problem, in some languages (like C++), it can be

Lecture 13 - Memory Ordering and Other Atomic Operations University of Waterloo

Memory Reordering Atomic Operations Good Practice

Overloading

In C++, you can overload the ++ and – operators
c l a s s X {
p u b l i c :

X& o p e r a t o r ++();
c on s t X o p e r a t o r++(i n t) ;

. . .
} ;

X x ;
++x ; // x . o p e r a t o r ++();
x++; // x . o p e r a t o r ++(0);

Lecture 13 - Memory Ordering and Other Atomic Operations University of Waterloo

Memory Reordering Atomic Operations Good Practice

Common Implementation

Prefix is also known as increment and fetch
Postfix also known as fetch and increment
X& X : : o p e r a t o r ++()
{

∗ t h i s += 1 ;
r e t u r n ∗ t h i s ;

}

c on s t X X : : o p e r a t o r++(i n t)
{

c on s t X o l d = ∗ t h i s ;
++(∗ t h i s) ;
r e t u r n o l d ;

}

Lecture 13 - Memory Ordering and Other Atomic Operations University of Waterloo

Memory Reordering Atomic Operations Good Practice

Efficiency

If you’re the least concerned about efficiency you should always use
prefix increments/decrements instead of defaulting to postfix

Only use postfix when you really mean it, to be on the safe side

Lecture 13 - Memory Ordering and Other Atomic Operations University of Waterloo

Memory Reordering Atomic Operations Good Practice

Summary

• Memory ordering
• Sequential consistency
• Relaxed consistency
• Weak consistency

• How to prevent memory reordering with fences

• Other atomic operations

• A good practice

Lecture 13 - Memory Ordering and Other Atomic Operations University of Waterloo

	Memory Reordering
	Atomic Operations
	Good Practice

