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Memory Ordering

Memory-consistency can also refer to the order of memory
operations

• Sequential consistency
• No reordering of loads/stores

• Relaxed consistency (only some types of reorderings)
• Loads can be reordered after loads/stores
• Stores can be reordered after loads/stores

• Weak consistency
• Any reordering is possible

Reorderings are done if they look safe in the current context (are
independent)
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Final Exam Question

x = y = 0

/∗ t h r e a d 1 ∗/ /∗ t h r e a d 2 ∗/
x = 1 ; y = x ;
r1 = y ; r2 = x ;

Assume the architecture is not sequentially consistent (weak
consistency)

Show me all possible (intermediate and final) memory values and
how they arise
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Final Exam Solution

• You have to go over every permutation of lines (since they
can be in any order)

• Then just over all the values

• Won’t be on this years final, but shows how
memory-reordering could complicate things
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Compiler Memory Reordering

The compiler may reorder instructions, along with the hardware

Example: we want thread 1 to print a value after thread 2 is done
f = 0

/∗ t h r e a d 1 ∗/ /∗ t h r e a d 2 ∗/
w h i l e ( f == 0 ) ; x = 42 ;
p r i n t f ("%d " , x ) ; f = 1 ;

• If thread 2 reorders its instructions, will we get our intended
result?

• No
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Compiler Memory Reordering

The compiler may reorder instructions, along with the hardware

Example: we want thread 1 to print a value after thread 2 is done
f = 0

/∗ t h r e a d 1 ∗/ /∗ t h r e a d 2 ∗/
w h i l e ( f == 0 ) ; x = 42 ;
p r i n t f ("%d " , x ) ; f = 1 ;

• If thread 2 reorders its instructions, will we get our intended
result?

• No
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Preventing Compiler Memory Reordering

• A memory fence prevents memory operations from crossing
the fence

• Also known as a memory barrier

f = 0

/∗ t h r e a d 1 ∗/ /∗ t h r e a d 2 ∗/
w h i l e ( f == 0 ) ; x = 42 ;
// memory f e n c e // memory f e n c e
p r i n t f ("%d " , x ) ; f = 1 ;

• This now prevents any reordering
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Preventing Compiler Memory Reordering in Programs

• Syntax depends on the compiler

Microsoft Visual Compiler
_ReadWr i t eBar r i e r ( )

Intel Compiler
__memory_barrier ( )

GNU Compiler
__asm__ __vo la t i l e__ ( " " : : : "memory " ) ;
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Aside: gcc Inline Assembly

Just as an aside, here’s gcc’s inline assembly format
__asm__ ( a s s e m b l e r t emp la t e

: output ope rands /∗ o p t i o n a l ∗/
: i n p u t ope rands /∗ o p t i o n a l ∗/
: l i s t o f c l o b b e r e d r e g i s t e r s /∗ o p t i o n a l ∗/
) ;

Last slide used volatile as well, however this isn’t the same as
what we’ve seen before, in this context it means:

• The compiler may not reorder this assembly code and put it
somewhere else in the program
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Hardware Memory Reordering

An AMD64 can reorder stores after loads
• Actual details are beyond the scope of this course

AMD64 class CPUs also have memory fences
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Preventing Hardware Memory Reordering

Note: these are all asm instructions

mfence
• All loads and stores before the fence finish before anymore

execute

sfence
• All stores before the fence finish before anymore execute

lfence
• All loads before the fence finish before anymore execute
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Preventing Hardware Memory Reordering (Option 2)

• Some compilers also support preventing hardware reordering

Microsoft Visual Compiler
MemoryBarr ie r ( ) ;

Sun Studio (Oracle) Compiler
__machine_r_barr ie r ( ) ;
__machine_w_barr ier ( ) ;
__machine_rw_barr ier ( ) ;

GNU Compiler
__sync_synchron ize ( ) ;
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Relevance to OpenMP

• Fortunately an OpenMP flush also preserves the order of
variable accesses

• Stops reordering from both the compiler and hardware

• For GNU, it’s actually just implemented as
__sync_synchronize();

Note: the proper use of memory fences makes volatile not very
useful (again, volatile is not meant to help with threading, and
will have a different behaviour for threading over different
compilers/hardware)
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Atomic Operations

• We saw the atomic directive in OpenMP

• Most map to hardware instructions that are atomic

• There are other atomic instructions as well...

Lecture 13 - Memory Ordering and Other Atomic Operations University of Waterloo



Memory Reordering Atomic Operations Good Practice

Compare and Swap

Also called compare and exchange (cmpxchg instruction)

i n t compare_and_swap ( i n t ∗ reg , i n t o l d v a l , i n t newva l )
{

i n t o l d_reg_va l = ∗ r eg ;
i f ( o l d_reg_va l == o l d v a l )

∗ r eg = newval ;
r e t u r n o ld_reg_va l ;

}

• After, you can check if it returned oldval
• If it did, you know you changed it
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Implementing a Spinlock

This is essentially the spinlock implementation:

v o i d s p i n l o c k _ i n i t ( i n t ∗ l ) { ∗ l = 0 ; }

v o i d s p i n l o c k _ l o c k ( i n t ∗ l ) {
w h i l e ( compare_and_swap ( l , 0 , 1) != 0) {}
__asm__ (" mfence " ) ;

}

v o i d s p i n l o c k _ u n l o c k ( i n t ∗ i n t ) {
__asm__ (" mfence " ) ;
∗ l = 0 ;

}

You’ll see cmpxchg quite frequently in the Linux kernel code
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ABA Problem

• Sometimes you’ll use read a location twice and assume if the
value is the same, nothing has changed

• This is not always true and is an ABA problem
• You can combat this by “tagging”, there is a double compare

and swap which also uses an identifer when swapping

• Just something to be aware of, it won’t be tested
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Prefix and Postfix

Lots of people use postfix, when really, it should be prefix

In C, this isn’t a problem, in some languages (like C++), it can be
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Overloading

In C++, you can overload the ++ and – operators
c l a s s X {
p u b l i c :

X& o p e r a t o r ++();
c on s t X o p e r a t o r++( i n t ) ;

. . .
} ;

X x ;
++x ; // x . o p e r a t o r ++();
x++; // x . o p e r a t o r ++(0);
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Common Implementation

Prefix is also known as increment and fetch
Postfix also known as fetch and increment
X& X : : o p e r a t o r ++()
{

∗ t h i s += 1 ;
r e t u r n ∗ t h i s ;

}

c on s t X X : : o p e r a t o r++( i n t )
{

c on s t X o l d = ∗ t h i s ;
++(∗ t h i s ) ;
r e t u r n o l d ;

}
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Efficiency

If you’re the least concerned about efficiency you should always use
prefix increments/decrements instead of defaulting to postfix

Only use postfix when you really mean it, to be on the safe side
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Summary

• Memory ordering
• Sequential consistency
• Relaxed consistency
• Weak consistency

• How to prevent memory reordering with fences

• Other atomic operations

• A good practice
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