
Lecture 14 - Lock Granularity, Reentrancy and
Inlining

ECE 459: Programming for Performance

Jon Eyolfson

University of Waterloo

February 3, 2012

Locking Granularity Reentrancy Good Practices

Previous Lecture

• Memory ordering
• Memory fences / barriers

• Compare and swap atomic operation

• Using prefix instead of postfix

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

Locking

You need locks to prevent data races
• The extent of how you apply your locks is called it’s

granularity
• Do you lock large sections of your program, or divide the locks

and use smaller sections?

Things to consider about locks:
• Overhead
• Contention
• Deadlocks

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

Locking Overhead

• Memory allocated
• Initialization and destruction time
• Time to acquire and release locks

The more locks you have, the greater each cost is going to be

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

Locking Contention

• Most locking time is wasted waiting for the lock

• Reduced by:
• Making the locking region smaller (more granular)
• Making more locks for independent sections

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

Locking Deadlocks

The more locks you have, the more you have to worry about
deadlocks

Conditions for deadlocking:
1 Mutual Exclusion (of coruse for simple locks)
2 Hold and Wait (you have a lock and try to acquire another)
3 No Preemption (we can’t take simple locks away)
4 Circular Wait (waiting for a lock held by another process)

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

From the First Lecture

• Consider two processors trying to get two locks:

Thread 1
Get Lock 1
Get Lock 2
Release Lock 2
Release Lock 1

Thread 2
Get Lock 2
Get Lock 1
Release Lock 1
Release Lock 2

• Processor 1 gets Lock 1, then Processor 2 gets Lock 2, now
they both wait for eachother (deadlock)

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

Preventing Deadlocks

Always be careful if your code acquires a lock while holding one
Ways to prevent a deadlock:

• Ensure ordering in acquiring locks
• Using trylock

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

Preventing Deadlocks - Ensuring Order

v o i d f 1 () {
l o c k t y p e _ l o c k (& l 1) ;
l o c k t y p e _ l o c k (& l 2) ;
// p r o t e c t e d code
l o c k t y p e _ u n l o c k (& l 2) ;
l o c k t y p e _ u n l o c k (& l l) ;

}

v o i d f 2 () {
l o c k t y p e _ l o c k (& l 1) ;
l o c k t y p e _ l o c k (& l 2) ;
// p r o t e c t e d code
l o c k t y p e _ u n l o c k (& l 2) ;
l o c k t y p e _ u n l o c k (& l l) ;

}

• This code will not deadlock, you can only get l2 if you have l1

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

Preventing Deadlocks - Using trylock

Remember, for Pthreads, trylock returns 0 if it gets the lock
v o i d f 1 () {

l o c k t y p e _ l o c k (& l 1) ;
w h i l e (l o c k t y p e _ t r y l o c k (& l 2) != 0) {

l o c k t y p e _ u n l o c k (& l 1) ;
// wa i t
l o c k t y p e _ l o c k (& l 1) ;

}
// p r o t e c t e d code
l o c k t y p e _ u n l o c k (& l 2) ;
l o c k t y p e _ u n l o c k (& l l) ;

}

• This code will not deadlock, it will give up l1 if it can’t get l2

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

Coarse-Grained Locking (1)

(with one lock)

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

Coarse-Grained Locking (2)

Advantages

• Easier to implement
• No chance of deadlocking
• Lowest memory usage / setup time

Disadvantages
• Your parallel program can quickly become sequential

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

Coarse-Grained Locking Example - Python GIL

This is the main reason (most) scripting languages have poor
parallel performance

• Python puts a lock around the whole interpreter (global
interpreter lock)

• Only performance benefit you’ll see from threading is if a
thread is waiting for IO

• Any none IO bound program will be slower than the
sequential version (and slow down your system)

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

Fine-Grained Locking (1)

(with all different locks)

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

Fine-Grained Locking (2)

Advantages

• Maximizes parallelization in your program

Disadvantages
• May be mostly wasted memory / setup time
• Have to consider deadlocks
• More error prone (being sure you grab the right lock)

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

Fine-Grained Locking Examples

• The Linux kernel use to have one big lock that essentially
made kernel mode sequential

• Now consists of finer-grained locks for performance

• Databases could lock either fields / records / tables
(fine-grained to coarse-grained)

• You could also lock individual objects, etc

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

Reentrancy

• Means a function can be suspended in the middle and
re-entered (called again) before the previous execution
completes

• Does not always mean thread-safe (although it usually is)
• Recall, thread-safe is essentially no data races

Avoided if the function only modifies local data

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

Reentrancy Example

Courtesy of Wikipedia (with modifications):
i n t t ;

v o i d swap (i n t ∗x , i n t ∗y) {
t = ∗x ;
∗x = ∗y ;
// hardware i n t e r r u p t might i n v o k e i s r () he r e !
∗y = t ;

}

v o i d i s r () {
i n t x = 1 , y = 2 ;
swap(&x , &y) ;

}
. . .
i n t a = 3 , b = 4 ;
. . .

swap(&a , &b) ;

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

Reentrancy Example Explained

c a l l swap(&a , &b) ;
t = ∗x ; // t = 3 (a)
∗x = ∗y ; // a = 4 (b)
c a l l i s r () ;

x = 1 ; y = 2 ;
c a l l swap(&x , &y)
t = ∗x ; // t = 1 (x)
∗x = ∗y ; // x = 2 (y)
∗y = t ; // y = 1

∗y = t ; // b = 1

F i n a l v a l u e s :
a = 4 , b = 1

Expected v a l u e s :
a = 4 , b = 3

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

Reentrancy Example Fixed

i n t t ;

v o i d swap (i n t ∗x , i n t ∗y) {
i n t s ;

s = t ; // save g l o b a l v a r i a b l e
t = ∗x ;
∗x = ∗y ;
// hardware i n t e r r u p t might i n v o k e i s r () he r e !
∗y = t ;
t = s ; // r e s t o r e g l o b a l v a r i a b l e

}

v o i d i s r () {
i n t x = 1 , y = 2 ;
swap(&x , &y) ;

}
. . .
i n t a = 3 , b = 4 ;
. . .

swap(&a , &b) ;

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

Reentrancy Example Fixed Explained

c a l l swap(&a , &b) ;
s = t ; // s = UNDEFINED
t = ∗x ; // t = 3 (a)
∗x = ∗y ; // a = 4 (b)
c a l l i s r () ;

x = 1 ; y = 2 ;
c a l l swap(&x , &y)
s = t ; // s = 3
t = ∗x ; // t = 1 (x)
∗x = ∗y ; // x = 2 (y)
∗y = t ; // y = 1
t = s ; // t = 3

∗y = t ; // b = 3
t = s ; // t = UNDEFINED

F i n a l v a l u e s :
a = 4 , b = 3

Expected v a l u e s :
a = 4 , b = 3

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

Previous Example Thread-safety

Is the previous reentrant code thread safe?
(This is more what we’re concerned about in this course)
Again:
i n t t ;

v o i d swap (i n t ∗x , i n t ∗y) {
i n t s ;

s = t ; // save g l o b a l v a r i a b l e
t = ∗x ;
∗x = ∗y ;
// hardware i n t e r r u p t might i n v o k e i s r () he r e !
∗y = t ;
t = s ; // r e s t o r e g l o b a l v a r i a b l e

}

Possibly consider two calls: swap(a, b), swap(c, d) with
a = 1, b = 2, c = 3, d = 4

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

Previous Example Thread-safety Explained

g l o b a l : t

/∗ t h r e a d 1 ∗/ /∗ t h r e a d 2 ∗/
a = 1 , b = 2 ;
s = t ; // s = UNDEFINED
t = a ; // t = 1

c = 3 , d = 4 ;
s = t ; // s = 1
t = c ; // t = 3
c = d ; // c = 4
d = t ; // d = 3

a = b ; // a = 2
b = t ; // b = 3
t = s ; // t = UNDEFINED

t = s ; // t = 1

F i n a l v a l u e s :
a = 2 , b = 3 , c = 4 , d = 3 , t = 1

Expected v a l u e s :
a = 2 , b = 1 , c = 4 , d = 3 , t = UNDEFINED

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

Reentrancy vs Thread-Safety (1)

• Re-entrant does not always mean thread-safe (as we saw)
• But, for most sane implementations, it is thread-safe

• Are thread-safe functions reentrant?

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

Reentrancy vs Thread-Safety (2)

• Are thread-safe functions reentrant? Nope. Consider:

i n t f () {
l o c k t y p e _ l o c k () ;
// p r o t e c t e d code
l o c k t y p e _ u n l o c k () ;

}

Remember: Reentrant functions can be suspended in the
middle of execution and called again before the previous
execution completes

So this obviously isn’t reentrant, and it will deadlock

Interrupt handling is more for systems programming, so it may or
may not come up again

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

Inlining

You may be familiar with inlining
• Instructs the compiler to just insert the function code

in-place, instead of calling the function
• Therefore, no overhead of a function call!
• Compilers can also do better, context-sensitive operations it

couldn’t have before

No overhead... sounds like better performance... let’s inline
everything!

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

Inlining in C++

Implicit inlining (defining a function inside a class definition):
c l a s s P {
p u b l i c :

i n t get_x () c on s t { r e t u r n x ; }
. . .
p r i v a t e :

i n t x ;
} ;

Explicit inlining:
i n l i n e max(c on s t i n t& x , co n s t i n t& y) {

r e t u r n x < y ? y : x ;
}

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

The Other Side of Inlining

One big downside:
• Your program size is going to increase
• This is worse than you think

• Less cache hits
• More trips to memory

• Some inlines can grow very rapidly (C++ extended
constructors)

Just from this your performance may go down easily

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

Compilers on Inlining

Also, inlining is merely a suggestion to compilers, they can ignore
you, for example:

• Taking the function pointer of an “inline” function and using it
• Virtual functions (for C++)

will get you ignored quite fast

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

From a Usability Point-of-View

Debugging is more difficult (you can’t set a breakpoint in a
function that doesn’t actually exist)

• Most compilers simply won’t inline code with debugging
symbols on

• Some do, but typically its more of a pain
Library design:

• If you change any inline function, any users of that library
have to recompile their program if the library updates

• Avoided for non-inlined functions (executes the new function
dynamically at runtime)

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

Summary

• Limit your inlining to trival things
• Makes debugging easier and better usability
• Won’t slow down your program before you even start

optimizing it
• Fine vs. Coarse-Grained locking tradeoffs
• Preventing deadlocks
• Difference between reentrant and thread-safe functions

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

Locking Granularity Reentrancy Good Practices

Monday’s Lecture

Here’s the plan for Monday:

• Take up Assignment 1 and point out common mistakes and
things to improve

• Discuss Assignment 2 (probably going to be useful)

Lecture 14 - Lock Granularity, Reentrancy and Inlining University of Waterloo

	Locking Granularity
	Reentrancy
	Good Practices

