
Lecture 17 - Compiler Optimizations
ECE 459: Programming for Performance

Jon Eyolfson

University of Waterloo

February 13, 2012

Scalar Optimizations Loop Optimizations Other Optimizations

Introduction

• Today, we’ll be looking at compiler optimizations

• Most are related to performance, good to avoid doing these
by yourself, since:

• Likely waste time
• Make your code more unreadable

• Compiler’s have a host of optimization options, we’ll look at
gcc

Lecture 17 - Compiler Optimizations University of Waterloo

Scalar Optimizations Loop Optimizations Other Optimizations

GCC Optimization Levels

-O1 (-O)
• Reduce code size and execution time
• No optimizations that increase compiliation time

-O2

• All optimizations except space-speed tradeoff ones
-O3

• All optimizations
-O0 (default)

• Fastest compilation time, debugging performs as expected

Lecture 17 - Compiler Optimizations University of Waterloo

Scalar Optimizations Loop Optimizations Other Optimizations

Disregard Standards, Acquire Speedup

-Ofast

• All -O3 optimizations and non-standard compliant
optimizations, namely -ffast-math

Turns off exact implementations of IEEE or ISO
rules/specifications for math functions

Generally, if you don’t care about the exact results, you can use
this for a speedup

Lecture 17 - Compiler Optimizations University of Waterloo

Scalar Optimizations Loop Optimizations Other Optimizations

Constant Folding

i = 1024 ∗ 1024

The compiler will not emit code that does the multiplication at
runtime, it will simply use the computed value
i = 1048576

• Enabled at all optimization levels

Lecture 17 - Compiler Optimizations University of Waterloo

Scalar Optimizations Loop Optimizations Other Optimizations

Common Subexpression Elimination

-fgcse

• Perform a global common subexpression elimination pass
• This pass also performs global constant and copy propagation
• Enabled with -O2, -O3

Example:
a = b ∗ c + g ;
d = b ∗ c ∗ d ;

Instead of computing b * c twice, we compute it once, and reuse
the value in each expression

Lecture 17 - Compiler Optimizations University of Waterloo

Scalar Optimizations Loop Optimizations Other Optimizations

Constant Propagation

Moves the constant values from definition to use
• Valid if there’s no redefinition of the variable

Example:
i n t x = 14 ;
i n t y = 7 − x / 2 ;
r e t u r n y ∗ (28 / x + 2) ;

with constant propagation would produce:
i n t x = 14 ;
i n t y = 0 ;
r e t u r n 0 ;

Lecture 17 - Compiler Optimizations University of Waterloo

Scalar Optimizations Loop Optimizations Other Optimizations

Copy Propagation

Replaces direct assignments with their values, usually required to
run after common subexpression elimination

Example:
y = x
z = 3 + y

with copy propagation would produce:
z = 3 + x

Lecture 17 - Compiler Optimizations University of Waterloo

Scalar Optimizations Loop Optimizations Other Optimizations

Dead Code Elimination

-fdce

• Remove any code that is guaranteed not to execute
• Enabled at all optimization levels

Example:
i f (0) {

z = 3 + x ;
}

would not be included in the final executable

Lecture 17 - Compiler Optimizations University of Waterloo

Scalar Optimizations Loop Optimizations Other Optimizations

Loop Unrolling

-funroll-loops
• Unroll any loops with a set number of iterations

Example:
f o r (i n t i = 0 ; i < 4 ; ++i)

f (i)

would be transformed to:
f (0)
f (1)
f (2)
f (3)

Lecture 17 - Compiler Optimizations University of Waterloo

Scalar Optimizations Loop Optimizations Other Optimizations

Loop Interchange

-floop-interchange

Example: in C the following:
f o r (i n t i = 0 ; i < N; ++i)

f o r (i n t j = 0 ; j < M; ++j)
a [j] [i] = a [j] [i] ∗ c

would be transformed to this:
f o r (i n t j = 0 ; j < M; ++j)

f o r (i n t i = 0 ; i < N; ++i)
a [j] [i] = a [j] [i] ∗ c

since C is row-major (meaning a[1][1] is beside a[1][2]), the other
possibility is column-major

Lecture 17 - Compiler Optimizations University of Waterloo

Scalar Optimizations Loop Optimizations Other Optimizations

Loop Fusion

Example:
f o r (i n t i = 0 ; i < 100 ; ++i)

a [i] = 4

f o r (i n t i = 0 ; i < 100 ; ++i)
b [i] = 7

would be transformed to this:
f o r (i n t i = 0 ; i < 100 ; ++i) {

a [i] = 4
b [i] = 7

}

There is a trade-off here between data locality and loop overhead,
the opposite of this is called loop fission

Lecture 17 - Compiler Optimizations University of Waterloo

Scalar Optimizations Loop Optimizations Other Optimizations

Loop-Invariant Code Motion

• Moves invariants out of the loop
• Also called loop hoisting

Example:
f o r (i n t i = 0 ; i < 100 ; ++i) {

s = x ∗ y ;
a [i] = s ∗ i ;

}

would be transformed to this:
s = x ∗ y ;
f o r (i n t i = 0 ; i < 100 ; ++i) {

a [i] = s ∗ i ;
}

This reduces the amount of work we have to do for each iteration
of the loop

Lecture 17 - Compiler Optimizations University of Waterloo

Scalar Optimizations Loop Optimizations Other Optimizations

Devirtualization (1)

-fdevirtualize

• Attempt to convert calls to virtual functions to direct calls
• Enabled with -O2, -O3

Virutal functions impose some overhead, for instance in C++, you
must read the objects RTTI (run-time type information) then
effectively branch to the correct function

Lecture 17 - Compiler Optimizations University of Waterloo

Scalar Optimizations Loop Optimizations Other Optimizations

Devirtualization (2)

Example:
c l a s s A {

v i r t a l v o i d m() ;
} ;

c l a s s B : p u b l i c A {
v i r u t a l v o i d m() ;

}

i n t main (i n t argc , cha r ∗ a rgv []) {

s t d : : un ique_ptr <A> t (new B) ;
t .m() ;

}

could eliminate reading the RTTI and just insert a call to B’s m

Lecture 17 - Compiler Optimizations University of Waterloo

Scalar Optimizations Loop Optimizations Other Optimizations

Scalar Replacement of Aggregates

-fipa-sra

• Replace references by values when appropriate
• Enabled at -O2 and -O3

Example:
{

s t d : : un ique_ptr <F r u i t > a (new Apple) ;
s t d : : cout << c o l o r (a) << s t d : : e n d l ;

}

could be optimized to:
s t d : : cout << "Red" << s t d : : e n d l ;

if the compiler knew what color does

Lecture 17 - Compiler Optimizations University of Waterloo

Scalar Optimizations Loop Optimizations Other Optimizations

Aliasing and Pointer Analysis

• We’ve seen using restrict to tell the compiler variables do
not alias

• Pointer analysis tracks the variables in your program to
determine whether or not they alias

• If they don’t alias, we can reorder them and do other types of
optimizations

Lecture 17 - Compiler Optimizations University of Waterloo

Scalar Optimizations Loop Optimizations Other Optimizations

Call Graph

• A directed graph that shows relationships between functions

• Relativity simple in C, hard for virtual function calls
(C++/Java)

• Virtual calls require pointer analysis

Lecture 17 - Compiler Optimizations University of Waterloo

Scalar Optimizations Loop Optimizations Other Optimizations

Importance of Call Graphs

Having the call graph allows us to know if the following can be
optimized:
i n t n ;

i n t f () { /∗ opaque ∗/ }

i n t main () {
n = 5 ;
f () ;
p r i n t f ("%d\n " , n) ;

}

We could propagate the constant value 5, as long as we know that
f() does not write to n

Lecture 17 - Compiler Optimizations University of Waterloo

Scalar Optimizations Loop Optimizations Other Optimizations

Tail Recursion Elimination

-foptimize-sibling-calls

• Optimize sibling and tail recursive calls
• Enabled at -O2 and -O3

Example:
i n t bar (i n t N) {

i f (A(N))
r e t u r n B(N) ;

e l s e
r e t u r n bar (N) ;

}

We can just replace the call to bar by a goto at the compiler
level, this way we avoid having overhead of a function call and
increasing our call stack

Lecture 17 - Compiler Optimizations University of Waterloo

Scalar Optimizations Loop Optimizations Other Optimizations

Branch Predictions

• GCC attempts to guess the probability of branches in order to
do the best code ordering

• You can use __builtin_expect(expr, value) to help
GCC, if you know the run-time characteristics of your program

Example (in the Linux kernel):
#d e f i n e l i k e l y (x) _ _ b u i l t i n _ e x p e c t ((x) , 1)
#d e f i n e u n l i k e l y (x) _ _ b u i l t i n _ e x p e c t ((x) , 0)

Lecture 17 - Compiler Optimizations University of Waterloo

Scalar Optimizations Loop Optimizations Other Optimizations

Architecture Specific

Two common ones march and mtune (march implies mtune)

• These enable using specific instructions that not all CPUs may
support (SSE4.2, etc.)

• Example: -march=corei7

• Good to use on your local machine, not so much for shipped
code

Lecture 17 - Compiler Optimizations University of Waterloo

Scalar Optimizations Loop Optimizations Other Optimizations

Summary

• A feel of what the optimization levels do

• What some of the compiler optimizations are

• Full list: http://gcc.gnu.org/onlinedocs/gcc/
Optimize-Options.html

Lecture 17 - Compiler Optimizations University of Waterloo

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

	Scalar Optimizations
	Loop Optimizations
	Other Optimizations

