
Lecture 18 - Performance Examples
ECE 459: Programming for Performance

Jon Eyolfson

University of Waterloo

February 15, 2012



Sorting Vectors vs. Lists

Previous Lecture

• A laundry list of compiler optimizations

• Your code should be as readable as possible
• The compiler is likely to do a better job
• The optimization may not even matter in the big picture

(we’ll see were to focus our efforts when we do profiling)

Don’t waste yourself

• You should give the compiler as much information* as possible
• *correct information
• Using restrict and __builtin_expected

Lecture 18 - Performance Examples University of Waterloo



Sorting Vectors vs. Lists

Introduction

• So far, we’ve only seen C, since we haven’t seen anything
terribly complex

• Writing compact, readable code in C is hard, common things
you see are:

• define macros
• void*

• Mainly C, because it’s low level, and we want to learn whats
really going on

• C++11 has made major strides towards readability and
efficiency (light-weight abstractions)

Lecture 18 - Performance Examples University of Waterloo



Sorting Vectors vs. Lists

Problem

All we want to do is sort a bunch of integers

• In C our standard option is to use qsort in stdlib.h

v o i d q s o r t ( v o i d ∗ base , s i z e _ t num , s i z e _ t s i z e ,
i n t (∗ comparator ) ( co n s t v o i d ∗ , c o n s t v o i d ∗ ) ) ;

• A fairly ugly definition (as is standard with generic C
functions)

Lecture 18 - Performance Examples University of Waterloo



Sorting Vectors vs. Lists

qsort Usage

#i n c l u d e < s t d l i b . h>

i n t compare ( c on s t v o i d ∗ a , c o n s t v o i d ∗ b )
{

r e t u r n ( ∗ ( ( i n t ∗) a ) − ∗( ( i n t ∗) b ) ) ;
}

i n t main ( i n t argc , cha r ∗ a rgv [ ] )
{

i n t a r r a y [ ] = {4 , 3 , 5 , 2 , 1} ;
q s o r t ( a r r ay , 5 , s i z e o f ( i n t ) , compare ) ;

}

• This looks like a nightmare and is more likely to have bugs

Lecture 18 - Performance Examples University of Waterloo



Sorting Vectors vs. Lists

C++ sort

C++ has a version of sort that is much nicer interface*...

t emp la t e <c l a s s RandomAccess I t e ra to r >
v o i d s o r t (

RandomAcces s I t e ra to r f i r s t ,
RandomAcces s I t e ra to r l a s t

) ;

t emp la t e <c l a s s RandomAccess I t e ra to r , c l a s s Compare>
v o i d s o r t (

RandomAcces s I t e ra to r f i r s t ,
RandomAcces s I t e ra to r l a s t ,
Compare comp

) ;

* To use, after you get over templates (they’re useful, I swear)

Lecture 18 - Performance Examples University of Waterloo



Sorting Vectors vs. Lists

C++ sort Usage

#i n c l u d e <vec to r >
#i n c l u d e <a lgo r i t hm >

i n t main ( i n t argc , cha r ∗ a rgv [ ] )
{

s t d : : v e c to r <i n t > v = {4 , 3 , 5 , 2 , 1} ;
s t d : : s o r t ( v . beg in ( ) , v . end ( ) ) ;

}

Note: Your compare function can be function or a functors, by
default it’s operator<

• Which is less error prone?
• Which is faster?

Lecture 18 - Performance Examples University of Waterloo



Sorting Vectors vs. Lists

Standard Algorithms Results

[Shown actual runtimes of qsort vs sort]

• The C++ version is twice as fast, why?
• The C version just operates on memory, it has no clue what

the data is
• We’re throwing away useful information about what’s being

sorted
• A C function call will prevent inlining of the compare function

• What if we write our own sort in C, specialized for the data?

Lecture 18 - Performance Examples University of Waterloo



Sorting Vectors vs. Lists

Results and Conclusion

[Shown actual runtimes of custom sort vs sort]

• The C++ version is still faster (although it’s close)
• However, this is quickly going to become a maintainability

nightmare
• Would you rather read a custom sort or 1 line?
• What do you trust more?

• Abstractions will not make your program slower, they can
actually allow speedups and is much easier to maintain and
read

Lecture 18 - Performance Examples University of Waterloo



Sorting Vectors vs. Lists

Lecture Fun

Let’s throw Java in the mix and see what happens

Lecture 18 - Performance Examples University of Waterloo



Sorting Vectors vs. Lists

Problem

• Generate N random integers and insert them into (sorted)
sequence
Example: 3 4 2 1

• 3
• 3 4
• 2 3 4
• 1 2 3 4

• Remove N elements one at a time by going to a random
position and removing the element
Example: 2 0 1 0

• 1 2 4
• 2 4
• 2
•

For which N is it better to use a list than a vector (or array)?
Lecture 18 - Performance Examples University of Waterloo



Sorting Vectors vs. Lists

Complexity

• Vector
• Inserting

• O(log n) for binary search
• O(n) for insertion (on average, move half the elements)

• Removing
• O(1) for accessing
• O(n) for deletion (on average, move half the elements)

• List
• Inserting

• O(n) for linear search
• O(1) for insertion

• Removing
• O(n) for accessing
• O(1) for deletion

Therefore, based on their complexity lists should be better
Lecture 18 - Performance Examples University of Waterloo



Sorting Vectors vs. Lists

Reality

[Shown actual runtimes of vectors and lists]

Vectors dominate lists performance wise, why?

• Binary search vs. linear search complexity dominates

• The amount of memory lists use is far higher
64 bit machines:

• Vector: 4 bytes per element
• List: At least 20 bytes per element

• Memory access is slow, and comes in blocks
• Lists elements are all over memory, so there is a large number

of cache misses
• A cache miss for a vector will bring a lot more usable data

Lecture 18 - Performance Examples University of Waterloo



Sorting Vectors vs. Lists

Conclusion

• Don’t store unnecessary data in your program

• Keep your data as compact as possible

• Access memory in a predictable manner

• Use vectors instead of lists by default

• Programming abstractly can save a lot of time

Lecture 18 - Performance Examples University of Waterloo



Sorting Vectors vs. Lists

Summary

• More cases were giving the compiler more information gives
you better code

• Data structures can be very important, more so than
complexity

• Low-level code != Efficient

• You should think at a low level if you need to optimize
anything

• Readable code is good code (different hardware will have
different optimizations)

Lecture 18 - Performance Examples University of Waterloo


	Sorting
	Vectors vs. Lists

