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Write-Through Write-Back

Previous Lecture

• More cases were giving the compiler more information gives
you better code

• Data structures can be very important, more so than
complexity

• Low-level code != Efficient

• Low-level details however, can hugely change your
performance
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Write-Through Write-Back

Previous Example

• Vectors outperformed lists doing operations lists are good at
• You wondered that if we increased the size of the elements to

be equivalent the cache line size (64 bytes) we should see lists
pull ahead

For N = 5000 on my laptop

Block Size (bytes) Vector (s) List (s)
256 0.4 0.64
416 0.65 0.67
512 0.8 0.7
1024 1.59 0.83

• At 64 bytes, vectors still won by a large margin
• It didn’t even back out until about 416 bytes per element
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Write-Through Write-Back

Introduction

Image courtesy of Wikipedia

Coherency
• The values in all the caches match
• Act as if all CPUs are using shared memory
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Write-Through Write-Back

Example

Main memory: x = 7

• CPU1 reads x, puts the value in its cache
• CPU3 reads x, puts the value in its cache
• CPU3 modifies x = 42
• CPU1 reads x, from its cache?
• CPU2 reads x, what value does it get?

Unless we do something, CPU1 is going to read invalid data

Lecture 19 - Cache Coherency University of Waterloo



Write-Through Write-Back

Snoopy Cache, At a High Level

• Each CPU is connected through a simple bus
• Each CPU “snoops” to observe if a memory location is

read/written by another CPU
• We also need a cache controller for every CPU

What happens?

• Each CPU reads the bus, sees if any memory operation is
relevant, if it is, the controller takes appropriate action
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Write-Through Write-Back

Write-Through Cache

• The simpliest type of cache coherence
• All cache writes are done to main memory
• All cache writes also appear on the bus
• If another CPU snoops and sees it has the same location, it

will either invalidate or update the data (we’ll be looking at
invaldating)

• For write-through caches, normally when you write to an
invalidate location, you bypass the cache and go directly to
memory (write no-allocate)
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Write-Through Write-Back

Write-Through Protocol

• Two states, valid and invalid for each memory location
• The events are either from a processor (Pr) or the Bus

State Observed Generated Next State
Valid PrRd Valid
Valid PrWr BusWr Valid
Valid BusWr Invalid
Invalid PrWr BusWr Invalid
Invalid PrRd BusRd Valid
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Write-Through Write-Back

Write-Through Example

• For simplicity (this isn’t an architecture course) all cache
reads/writes are atomic

Using the same example as before:
Main memory: x = 7

• CPU1 reads x, puts the value in its cache (valid)
• CPU3 reads x, puts the value in its cache (valid)
• CPU3 modifies x = 42 (write to memory)

• CPU1 snoops and marks data as invalid
• CPU1 reads x, from main memory (valid)
• CPU2 reads x, from main memory (valid)
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Write-Through Write-Back

Write-Back Cache

• What if, in our example CPU3 writes x 3 times?

• Main goal is to avoid the write to memory as long as possible

• Minimum we have to add a “dirty” bit

• Indicates the our data has not yet been written to memory
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Write-Through Write-Back

Write-Back Implementation

• The simpliest type of write-back protocol, with 3 states
• Modified - only this cache has a valid copy, main memory is

out-of-date
• Shared - location is unmodified, up-to-date with main

memory, may be present in other caches (also up-to-date)
• Invalid - same as before

• The initial state when data is read is shared

• Basically, it will only write the data to memory if another
processor requests it

• During the write-back, a processor may read the data from
the bus
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Write-Through Write-Back

MSI Protocol

• The bus write-back or flush is BusWB
• The exclusive read on the bus is BusRdX

State Observed Generated Next State
Modified PrRd Modified
Modified PrWr Modified
Modified BusRd BusWB Shared
Modified BusRdX BusWB Invalid
Shared PrRd Shared
Shared BusRd Shared
Shared BusRdX Invalid
Shared PrWr BusRdX Modified
Invalid PrRd BusRd Shared
Invalid PrWr BusRdX Modified

Lecture 19 - Cache Coherency University of Waterloo



Write-Through Write-Back

MSI Example

Using the same example as before:
Main memory: x = 7

• CPU1 reads x from memory (BusRd, shared)
• CPU3 reads x from memory (BusRd, shared)
• CPU3 modifies x = 42

• Generates a BusRdX
• CPU1 snoops and invalidates x
• CPU3 changes x’s state to modified

• CPU1 reads x
• Generates a BusRd
• CPU3 writes back the data and sets x to shared
• CPU1 reads the new value from the bus as shared

• CPU2 reads x from memory (BusRd, shared)
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Write-Through Write-Back

MSI Extension

• The most common protocol for cache coherence is MESI
• Adds another state

• Modified - only this cache has a valid copy, main memory is
out-of-date

• Exclusive - only this cache has a valid copy, main memory is
up-to-date

• Shared - same as before
• Invalid - same as before

• This allows a processor to modify data that is exclusive,
without having to communicate with the bus

• We can do this, because we know no other processor has a
copy of the data
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Write-Through Write-Back

Even More States

• MESIF (used in latest i7 processors)
• Forward - basically a shared state, this cache is the only one

that will respond to a request to transfer the data

• A processor requesting data that is already shared or
exclusive, will only get one response to transfer the data

• This permits more efficient usage of the bus

Lecture 19 - Cache Coherency University of Waterloo



Write-Through Write-Back

Possible Questions (1)

Cache coherency seems to make sure my data is consistent,
why do I have to have something equivalent to OpenMP’s
flush?

• You might be ok, if all of the writes of the processor were to
the cache, but they’re not

• Cache coherency won’t update any values modified in registers
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Write-Through Write-Back

Possible Questions (2)

Well, I read that volatile variables aren’t stored in
registers, so then am I okay?
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Write-Through Write-Back

Possible Questions (2)

Well, I read that volatile variables aren’t stored in
registers, so then am I okay?
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Write-Through Write-Back

Possible Questions (2)

Well, I read that volatile variables aren’t stored in
registers, so then am I okay?

• volatile in C was only designed to
• Allow access to memory mapped devices
• Allow uses of variables between setjmp and longjmp
• Allow uses of sig_atomic_t variables in signal handlers

• Remember, things can also be reordered by the compiler,
volatile doesn’t prevent this

• Also, it’s likely your variables could be in registers the majority
of the time, except in critcal areas

Lecture 19 - Cache Coherency University of Waterloo



Write-Through Write-Back

Summary

• The OpenMP flush also acts as a memory barrier/fence so
the compiler and hardware do not reorder your reads and
writes

• Neither cache coherence nor volatile will save you

• Basics of cache coherence (good to know, but more of an
architecture thing)

• There’s many other protocols for cache coherence, each with
their own trade-offs
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