
Lecture 20 - Basic Profiling
ECE 459: Programming for Performance

Jon Eyolfson

University of Waterloo

February 27, 2012

Midterm Profiling gprof

Reminder

Midterm

• Date: This Friday

• Time: 6:30 PM

• Location: RCH 105 (A-K), RCH 110 (L-Z)
• Organized by last names

Lecture 20 - Basic Profiling University of Waterloo

Midterm Profiling gprof

Content

• Closed-book

• Simple calculators (no other aides)

• 4 Questions
• Definitions (pick two of three)
• Calculations (Amdahl’s/Gustafson’s law)
• Data races/thread-safety
• Dependencies

Lecture 20 - Basic Profiling University of Waterloo

Midterm Profiling gprof

Style

• Mostly consistent with last year

• Content is mainly from lectures 1-7 (although future lectures
have some better explanation, i.e. thread-safety in lecture 15)

• I touched on critical paths in lecture 7, I’ll mention it again

Lecture 20 - Basic Profiling University of Waterloo

Midterm Profiling gprof

Preparation

• Friday’s tutorial time will be open office hours here

• 1:30 PM in DWE 3522

• As always, you can e-mail me or TAs to set up office hours

Lecture 20 - Basic Profiling University of Waterloo

Midterm Profiling gprof

Introduction

• So far we’ve been looking at small problems

• We have to profile to see what is taking up execution time in
a large program

• Two main outputs:
• Flat
• Call-graph

• Two main data gathering methods:
• Statistical
• Instrumentation

Lecture 20 - Basic Profiling University of Waterloo

Midterm Profiling gprof

Outputs

Flat Profiler

• Only computes the average time in a particular function
• Does not include anymore information such as: callee’s

Call-graph Profiler

• Computes the call times
• Frequency of function calls
• Call graph, showing what called the function

Lecture 20 - Basic Profiling University of Waterloo

Midterm Profiling gprof

Data Gathering

Statistical

• Mostly done by taking samples of the system state
• Every 2ns, check the system state
• Will have some slowdown, but not much

Instrumentation

• Add additional instructions at specified program points
• You can do this at compile time or run time (expensive)
• Also, either manually or automatically
• Like conditional breakpoints

Lecture 20 - Basic Profiling University of Waterloo

Midterm Profiling gprof

Guide

For any large software projects you should:
• Write clear and consise code, not trying to do any premature

optimizations (focus on correctness)

• Profile to get a baseline of your performance
• Allows you to easily track any performance changes
• Allows you to re-design your program before it’s too late

• Focus your optimization efforts on the code that matters

Lecture 20 - Basic Profiling University of Waterloo

Midterm Profiling gprof

Things to Look For

• Time is spent in the right part of the system

• Majority of time should not be spent in any error-handling,
non-critical code or exceptional cases

• Time is not unnecessarily spent in the operating system

Lecture 20 - Basic Profiling University of Waterloo

Midterm Profiling gprof

Introduction

• Statistical based with some instrumentation for calls

• Runs completly in User-space

• Only requires a compiler

Lecture 20 - Basic Profiling University of Waterloo

Midterm Profiling gprof

Usage

• Use the -pg flag with gcc when compiling (also linking)

• Run your program as you normally would
• Your program will now create a gmon.out file

• Use gprof to interpret the results gprof <executable>

Lecture 20 - Basic Profiling University of Waterloo

Midterm Profiling gprof

Example

• A program that has 100 million calls to two math functions

i n t main () {
i n t i , x1=10, y1=3, r1=0;
f l o a t x2=10, y2=3, r2=0;

f o r (i =0; i <100000000; i++) {
r1 += int_math (x1 , y1) ;
r2 += f loat_math (y2 , y2) ;

}
}

• Looking at the code, we have no idea what takes longer
• Probably would guess floating point math taking longer
• Overall, silly example

Lecture 20 - Basic Profiling University of Waterloo

Midterm Profiling gprof

Example (Integer Math)

i n t int_math (i n t x , i n t y){
i n t r1 ;
r1=int_power (x , y) ;
r1=int_math_he lpe r (x , y) ;
r e t u r n r1 ;

}

i n t in t_math_he lpe r (i n t x , i n t y){
i n t r1 ;
r1=x/y∗ in t_power (y , x)/ int_power (x , y) ;
r e t u r n r1 ;

}

i n t int_power (i n t x , i n t y){
i n t i , r ;
r=x ;
f o r (i =1; i<y ; i ++){

r=r ∗x ;
}
r e t u r n r ;

}

Lecture 20 - Basic Profiling University of Waterloo

Midterm Profiling gprof

Example (Float Math)

f l o a t f loat_math (f l o a t x , f l o a t y) {
f l o a t r1 ;
r1=f l oa t_powe r (x , y) ;
r1=f l oa t_math_he lpe r (x , y) ;
r e t u r n r1 ;

}

f l o a t f l oa t_math_he lpe r (f l o a t x , f l o a t y) {
f l o a t r1 ;
r1=x/y∗ f l oa t_powe r (y , x)/ f l oa t_powe r (x , y) ;
r e t u r n r1 ;

}

f l o a t f l oa t_powe r (f l o a t x , f l o a t y){
f l o a t i , r ;
r=x ;
f o r (i =1; i<y ; i++) {

r=r ∗x ;
}
r e t u r n r ;

}

Lecture 20 - Basic Profiling University of Waterloo

Midterm Profiling gprof

Flat Profile

• When we run the program and look at the profiling data, this
is the first thing we see

F l a t p r o f i l e :

Each sample count s as 0 .01 seconds .
% cumu l a t i v e s e l f s e l f t o t a l
t ime seconds seconds c a l l s ns / c a l l ns / c a l l name
32 .58 4 .69 4 .69 300000000 15 .64 15 .64 int_power
30 .55 9 .09 4 .40 300000000 14 .66 14 .66 f l oa t_powe r
16 .95 11 .53 2 .44 100000000 24 .41 55 .68 int_math_he lpe r
11 .43 13 .18 1 .65 100000000 16 .46 45 .78 f l oa t_math_he lpe r
4 .05 13 .76 0 .58 100000000 5 .84 77 .16 int_math
3 .01 14 .19 0 .43 100000000 4 .33 64 .78 f loat_math
2 .10 14 .50 0 .30 main

• One function per line
• time: the percent of the total execution time in this function
• self: seconds in this function
• cumulative: addition of this function plus any above in table

Lecture 20 - Basic Profiling University of Waterloo

Midterm Profiling gprof

Flat Profile

F l a t p r o f i l e :

Each sample count s as 0 .01 seconds .
% cumu l a t i v e s e l f s e l f t o t a l
t ime seconds seconds c a l l s ns / c a l l ns / c a l l name
32 .58 4 .69 4 .69 300000000 15 .64 15 .64 int_power
30 .55 9 .09 4 .40 300000000 14 .66 14 .66 f l oa t_powe r
16 .95 11 .53 2 .44 100000000 24 .41 55 .68 int_math_he lpe r
11 .43 13 .18 1 .65 100000000 16 .46 45 .78 f l oa t_math_he lpe r
4 .05 13 .76 0 .58 100000000 5 .84 77 .16 int_math
3 .01 14 .19 0 .43 100000000 4 .33 64 .78 f loat_math
2 .10 14 .50 0 .30 main

• calls: number of times this function was called
• self ns/call: just self nanoseconds / calls
• total ns/call: average time of function execution, including

any other calls the function makes

Lecture 20 - Basic Profiling University of Waterloo

Midterm Profiling gprof

Call Graph Example (1)

• After the flat profile gives you a feel of the costly functions,
you can get a better story from the call-graph

i n d e x % t ime s e l f c h i l d r e n c a l l e d name
<spontaneous>

[1] 100 .0 0 .30 14 .19 main [1]
0 .58 7 .13 100000000/100000000 int_math [2]
0 .43 6 .04 100000000/100000000 f loat_math [3]

−−−
0 .58 7 .13 100000000/100000000 main [1]

[2] 53 .2 0 .58 7 .13 100000000 int_math [2]
2 .44 3 .13 100000000/100000000 int_math_he lpe r [4]
1 .56 0 .00 100000000/300000000 int_power [5]

−−−
0 .43 6 .04 100000000/100000000 main [1]

[3] 44 .7 0 .43 6 .04 100000000 f loat_math [3]
1 .65 2 .93 100000000/100000000 f l oa t_math_he lpe r [6]
1 .47 0 .00 100000000/300000000 f l oa t_powe r [7]

Lecture 20 - Basic Profiling University of Waterloo

Midterm Profiling gprof

Reading the Call Graph

• The line with the index is the current function being looked at
(primary line)

• Lines above are functions which called this function
• Lines below are functions which were called by this function

(children)
Primary Line

• time: total percentage of time spent in this function and it’s
children

• self: same as flat profile
• children: time spent in all calls made by the function

• It should be equal to self + children of all functions below

Lecture 20 - Basic Profiling University of Waterloo

Midterm Profiling gprof

Reading the Call Graph Callers

Callers (functions above the primary line)

• self: time spent in primary function, when called from current
function

• children: time spent in primary function’s children, when
called from current function

• called: number of times primary function was called from
current function / number of nonrecursive calls to primary
function

Lecture 20 - Basic Profiling University of Waterloo

Midterm Profiling gprof

Reading the Call Graph Callees

Callees (functions below the primary line)

• self: time spent in current function when called from primary
function

• children: time spent in current function’s children calls when
called from primary function

• self + children is an estimate of time spent in current function
when called from primary function

• called: number of times current function was called from
primary function / number of nonrecursive calls to current
function

Lecture 20 - Basic Profiling University of Waterloo

Midterm Profiling gprof

Call Graph Example (2)

i n d e x % t ime s e l f c h i l d r e n c a l l e d name

2 .44 3 .13 100000000/100000000 int_math [2]
[4] 38 .4 2 .44 3 .13 100000000 int_math_he lpe r [4]

3 .13 0 .00 200000000/300000000 int_power [5]
−−−

1 .56 0 .00 100000000/300000000 int_math [2]
3 .13 0 .00 200000000/300000000 int_math_he lpe r [4]

[5] 32 .4 4 .69 0 .00 300000000 int_power [5]
−−−

1 .65 2 .93 100000000/100000000 f loat_math [3]
[6] 31 .6 1 .65 2 .93 100000000 f l oa t_math_he lpe r [6]

2 .93 0 .00 200000000/300000000 f l oa t_powe r [7]
−−−

1 .47 0 .00 100000000/300000000 f loat_math [3]
2 .93 0 .00 200000000/300000000 f l oa t_math_he lpe r [6]

[7] 30 .3 4 .40 0 .00 300000000 f l oa t_powe r [7]

• We can now see where most of the time comes from, and
pin-point any locations that makes unexpected calls, etc.

• This example isn’t too exciting, and we could simplify the
math

Lecture 20 - Basic Profiling University of Waterloo

Midterm Profiling gprof

Summary

• Saw how to use gprof (one option for Assignment 3)

• Profile early and often

• Make sure your profiling shows what you expect

• We’ll see other profiles we can use as well
• OProfile
• Valgrind
• AMD CodeAnalyst

Lecture 20 - Basic Profiling University of Waterloo

Midterm Profiling gprof

Assignment 3

• Hopefully out Wednesday

• Travelling salesman problem

• Improving a genetic algorithm in C++

• Now is your time to get into groups of 2, e-mail me with your
WatIDs

Lecture 20 - Basic Profiling University of Waterloo

	Midterm
	Profiling
	gprof

