Lecture 21 - More Profiling Tools

ECE 459: Programming for Performance

Jon Eyolfson

University of Waterloo

February 29, 2012



gperftools oprofile DTrace

Introduction

= Google Performance Tools include:

= CPU profiler
= Heap profiler
= Heap checker
= Faster malloc

= We'll mostly use the CPU profiler

= Purely statistical sampling
= No recompilation, or just linking
= Built-in visual output

Lecture 21 - More Profiling Tools University of Waterloo



gperftools oprofile DTrace

Usage

= You can use the profiler without any recompilation
= Not recommended

LD_PRELOAD="/usr/lib/libprofiler .so" CPUPROFILE=test . prof
./ test

= The other option is to link to the profiler
= -lprofiler

= Both options read the CPUPROFILE environment variable
= Location to write the profile data

Lecture 21 - More Profiling Tools University of Waterloo



gperftools oprofile DTrace

Other Usage

= You can use the profiling library directly as well:
= #include <gperftools/profiler.h>
= Bracket code you want profiled with:

= ProfilerStart()
= ProfilerEnd()

= You can change the sampling frequency with the
CPUPROFILE_FREQUENCY environment variable

= Default value: 100

Lecture 21 - More Profiling Tools University of Waterloo



gperftools o e DTrace

pprof Usage

= Similar to gprof, it will analyze the results

% pprof test test.prof
Enters "interactive" mode
% pprof —text test test.prof
OQutputs one line per procedure
% pprof —gv test test.prof
Displays annotated call—graph via 'gv’
% pprof —gv —focus=Mutex test test.prof
Restricts to code paths including a .xMutex.x entry

% pprof —gv —focus=Mutex —ignore=string test test.prof
Code paths including Mutex but not string
% pprof —list=getdir test test.prof

(Per—line) annotated source listing for getdir()
% pprof —disasm=getdir test test.prof
(Per—PC) annotated disassembly for getdir()

= Also output dot, ps, pdf or gif instead of gv

Lecture 21 - More Profiling Tools University of Waterloo



gperftools oprofile DTrace

Text Output

= Similar to the flat profile in gprof

jon@riker examples master % pprof —text test test.prof
Using local file test.
Using local file test.prof.
Removing killpg from all stack traces.
Total: 300 samples
95 31.7% 31.7% 102 34.0% int_power
58 19.3% 51.0% 58 19.3% float_power
51 17.0% 68.0% 96 32.0% float_math_helper
50 16.7% 84.7% 137 45.7% int_math_helper
18 6.0% 90.7% 131 43.7% float_math
14 4.7% 95.3% 159 53.0% int_math
14 4.7% 100.0% 300 100.0% main
0 0.0% 100.0% 300 100.0% __libc_start_main
0 0.0% 100.0% 300 100.0% _start

Lecture 21 - More Profiling Tools University of Waterloo



gperftools oprofile DTrace

Text Output Explained

= Number of checks in this function

= Percentage of checks in this function
= Same as time in gprof

= Percentage of checks in the functions printed so far
= Equivalent to cumaltive (but in %)

= Number of checks in this function and its callees
= Percentage of checks in this function and its callees

= Function name

Lecture 21 - More Profiling Tools University of Waterloo



gperftools

DTrace

Graphical Output

Dropped nodes with <= 1 abs(samples)
Dropped edges with <= 0 samples

int_math_helper
50 (16.7%)
of 137 (45.7%)

float_math_helper
51 (17.0%)
of 96 (32.0%)

int_power k|
95 (3L.79%)
of 102 (34.0%)

Lecture 21 - More Profiling Tools University of Waterloo



gperftools oprofile DTrace

Graphical Output Explained

Likely the output this will be too small to read on the slide

= Shows the same numbers as the text output
= An edge tells you the function calls the one pointed to

= Number of samples in callees =
Number in this function and callees -
Number in this function

= Example (float_math_helper):
91-51 =145
= To int_power =7
= To float_power = 38
= Total = 45

Lecture 21 - More Profiling Tools University of Waterloo



gperftools oprofile DTrace

Things You May Notice

= The call graph is not exact

= In fact, it shows many relations we know don’t exist
= For instance, the int and float functions are separate

= Similar to gprof more optimizations enabled will change the
graph

= You'll probably want to look at the text profile first, then use
the -focus flag to look at individual functions

Lecture 21 - More Profiling Tools University of Waterloo



gperftools oprofile DTrace

Introduction

= Another sampling-based tool

Uses CPU clock cycles, checks the current function

= Runs as a Linux kernel module

= Records profiling data for every application run

Lecture 21 - More Profiling Tools University of Waterloo



gperftools oprofile DTrace

Setup

= Since this is a system profiler, you have to start it as root

% sudo opcontrol

—vmlinux=/usr/src/linux —3.2.7—1—-ARCH/vmlinux
% echo 0 | sudo tee /proc/sys/kernel/nmi_watchdog
% sudo opcontrol ——start
Using default event: CPU_CLK_UNHALTED:100000:0:1:1
Using 2.6+ OProfile kernel interface.
Reading module info.
Using log file /var/lib/oprofile/samples/oprofiled.log
Daemon started.
Profiler running.

Lecture 21 - More Profiling Tools University of Waterloo



oprofile DTrace

= Use opreport and your executable

% sudo opreport —| ./test

CPU: Intel Core/i7, speed 1595.78 MHz (estimated)
Counted CPU_CLK_UNHALTED events (Clock cycles when not
halted) with a unit mask of 0x00 (No unit mask) count 100000
samples % symbol name

7550 26.0749 int_math_helper

5982 20.6596 int_power

5859 20.2348 float_power

3605 12.4504 float_math

3198 11.0447 int_math

2601 8.9829 float_math_helper

160 0.5526 main

= If you have debug symbols (-g) you could use:

% sudo opannotate ——source
—output—dir=/path/to/annotated—source /path/to/mybinary

Lecture 21 - More Profiling Tools University of Waterloo



gperftools oprofile DTrace

Usage (2)

= Use opreport by itself for a whole system view

= You can also reset and stop the profiling

% sudo opcontrol —reset
Signalling daemon... done
% sudo opcontrol ——stop

Stopping profiling.

= You need to use reset if you reinstalled a newer version of
oprofile

Lecture 21 - More Profiling Tools University of Waterloo



gperftools oprofile DTrace

Introduction

Intrumentation-based
= System-wide
= Meant to be used on production systems

= Typical instrumentation can have a slowdown of 100x
(Valgrind)

= No overhead when not in use and doesn't crash (strict usage)

Lecture 21 - More Profiling Tools University of Waterloo



gperftools oprofile DTrace

Operation

= DTrace dynamically rewrites code by placing a branch to your
instrumentation code

= Uninstrumented run as if nothing changed
= The main use is at function entry or exit points

= You can also instrument kernel functions, locking, instrument
based on other events

= There's actions for sampling as well

Lecture 21 - More Profiling Tools University of Waterloo



gperftools oprofile DTrace

Example

syscall ::read:entry {
self —>t = timestamp;

}

syscall ::read:return

/self—>t/ {

printf("%d/%d spent %d nsecs in read\n"
pid, tid, timestamp — self-—>t);

= t is a thread-local variable

= This code prints how long each call to read takes, along with
context

= Very limited to what you can put in, i.e no loops
= This is how DTrace guarantees no infinite loops

Lecture 21 - More Profiling Tools University of Waterloo



gperftools oprofile DTrace

Other Tools

= AMD CodeAnalyst did not compile, hopefully be availabe on
the server

= WAIT
= IBM'’s tool tells you what operations your JVM is waiting on
while idle
= Non-free and not available

= Not limited to code, or C/C++

= Google's Page Speed Tool
= Python cProfile

Lecture 21 - More Profiling Tools University of Waterloo



gperftools oprofile DTrace

Assignment 3

= New goal: Friday

= There's the midterm anyways

= If we have to, we can make Assignment 4 shorter

Lecture 21 - More Profiling Tools University of Waterloo



gperftools oprofile Drace

Future Lectures

= OpenMPI
= OpenCL
= Hadoop MapReduce

= Software Transactional Memory

= Got a suggestion to have a live scoreboard for Assignment 3
= I'll try to piece this together

= |If there's anything else you want to see in this course, let me
know

Lecture 21 - More Profiling Tools University of Waterloo



gperftools oprofile DTrace

Friday's Lecture

= Midterm day

The lecture will be extended office hours as well

= You may come here to study / ask questions

Also at 1:30PM

Lecture 21 - More Profiling Tools University of Waterloo



	gperftools
	oprofile
	DTrace

