
Lecture 22 - Assignment 3 Background
ECE 459: Programming for Performance

Jon Eyolfson

University of Waterloo

March 5, 2012

Genetic Algorithm Implementation Assignment

Midterm

• How did it go?
• Anything I should be aware of before starting grading?
• Should be handed back on Wednesday

• Also, we’ll do Course Critiques on Wednesday, please attend
and tell everyone else to attend

Lecture 22 - Assignment 3 Background University of Waterloo

Genetic Algorithm Implementation Assignment

Assignment Problem

Solving the travelling salesman problem

• Given a list of cities and their pairwise distances
• What is the shortest tour that visits each city exactly one?
• The tour begins and ends at the first city

It is an NP-hard problem
• We’ll use a genetic algorithm for this assignment

Lecture 22 - Assignment 3 Background University of Waterloo

Genetic Algorithm Implementation Assignment

Introduction

• Basically it applies heuristics from genetics to make a bunch
of random operations improve the answer

• Only has a few operations, allows it to solve other problems
• Course scheduling, a host of other NP-hard problems
• Seen it used to play games

Terms for Our Problem:
• Individual - a tour of cities (1, 4, 3, 2)
• Population - a collection of individuals

Lecture 22 - Assignment 3 Background University of Waterloo

Genetic Algorithm Implementation Assignment

Pseudocode

create an initial population pop(0) = X1, ..., XN
t ← 0
repeat

assign each Xi in pop(t) a probability f(Xi)/(
∑ f(Xi))

for i ← 1 to N do
a ← random selection of individual from pop(t)
b ← random selection of individual from pop(t)
child ← reproduce(a, b)
with small probability mutate child
add child to pop(t + 1)

t ← t + 1
until stopping criteria
return most fit individual

Lecture 22 - Assignment 3 Background University of Waterloo

Genetic Algorithm Implementation Assignment

Pseudocode Explained

That’s it, the only operations we have are
• Creating an initial population
• Creating a fitness function (higher is better)
• Creating a selection function (this is not problem specific)
• Creating a crossover function (or reproduce)
• Creating a mutation function

We have two parameters, which we will keep constant
• Population size - 100
• Mutation probability - 1%

Lecture 22 - Assignment 3 Background University of Waterloo

Genetic Algorithm Implementation Assignment

Initial Population

Note: we represent our tours as a sequence of the city indexes
• We just randomly shuffle the tours around for each individual

Example If we have a tour of 5 cities, we can randomly shuffle the
base tour of 1, 2, 3, 4, 5

• 1, 3, 2, 5, 4
• 1, 5, 2, 4, 3
• 1, 4, 5, 2, 3

Remember, our tour begins and ends at the first city

Lecture 22 - Assignment 3 Background University of Waterloo

Genetic Algorithm Implementation Assignment

Fitness Function

Basically, an evaluation of an individual in the population
• Most obvious metric is to just use the distance of the tour

• In this case, lower is better
• We need higher is better

• Therefore, we just subtract the maximum distance in the
population by the individual’s distance to get an individual’s
fitness

This means the individual with the highest distance in the
population will have a fitness of 0

Lecture 22 - Assignment 3 Background University of Waterloo

Genetic Algorithm Implementation Assignment

Selection Function

Intuition: have a better chance of picking more fit individuals
• Find the fitness of each indivudal, and normalize the values

• The sum of all the normalized fitness values should equal 1
• Sort the population by descending fitness values
• Accumlate the normalized fitness values (cumulative values)
• Pick a random value, R, between 0 and 1
• Select the individual whose accumulated normalized value is

greater than R

(also on Wikipedia and linked in the Assignment handout)

Lecture 22 - Assignment 3 Background University of Waterloo

Genetic Algorithm Implementation Assignment

Selection Function Example

Tours (Distance) [Fitness]
P0: 1, 5, 2, 4, 3 (100) [0]
P1: 1, 4, 5, 2, 3 (80) [20]
P2: 1, 3, 2, 5, 4 (50) [50]
P3: 1, 2, 4, 5, 3 (70) [30]

• Normalize the values
• P0: 0, P1: 0.2, P2: 0.5, P3: 0.3

• Sort the population by descending fitness values
• P2: 0.5, P3: 0.3, P1: 0.2, P0: 0

• Accumlate the normalized fitness values (cumulative values)
• P2: 0.5, P3: 0.8, P1: 1, P0: 1

• Pick a random value, R, between 0 and 1, then select the individual
whose accumulated normalized value is greater than R

• 0.4, therefore we pick P2
We can repeat the last point as many times as required

Lecture 22 - Assignment 3 Background University of Waterloo

Genetic Algorithm Implementation Assignment

Crossover Function

This is how we combine two individuals to create another individual
• We will use a simple ordered

• Select a random subtour from the first parent and copy it into
the child (in order, all the cities at the same spot in the tour)

• Copy the remaining cities, not already in the child, in the order
they appear in the second parent

Exmaple:
P2: 1, 3, 2, 5, 4 (first parent) and P3: 1, 2, 4, 5, 3 (second parent)

• We select a subtour (elements 2 to 3) to copy to the child
• 1, ?, 2, 5, ?

• Fill in the values from the second parent
• 1, 4, 2, 5, 3

Lecture 22 - Assignment 3 Background University of Waterloo

Genetic Algorithm Implementation Assignment

Mutation Function

This is how Xavier’s School for Gifted Youngsters got started
... or not, we’re just going to randomly change around a tour

• Select a random subtour
• Reverse the order of the subtour

Example:
1, 4, 2, 5, 3

• We pick elements 1 to 3 to reverse
• 1, 5, 2, 4, 3

Lecture 22 - Assignment 3 Background University of Waterloo

Genetic Algorithm Implementation Assignment

Pseudocode Again

create an initial population pop(0) = X1, ..., XN
t ← 0
repeat

assign each Xi in pop(t) a probability f(Xi)/(
∑ f(Xi))

for i ← 1 to N do
a ← random selection of individual from pop(t)
b ← random selection of individual from pop(t)
child ← reproduce(a, b)
with small probability mutate child
add child to pop(t + 1)

t ← t + 1
until stopping criteria
return most fit individual

Lecture 22 - Assignment 3 Background University of Waterloo

Genetic Algorithm Implementation Assignment

Summary

That’s it for our genetic algorithm, all of the operations here are
things you may not change for this assignment

• The interface to the solver code is only:
• Constructor call (will have the initial population)
• Iteration calls (selection, crossover, mutate)
• A call to get the best individual found

You may not change this interface, this means no attempting to
parallelize calls to the iteration function (although you are free to
try to parallelize the function itself)

Lecture 22 - Assignment 3 Background University of Waterloo

Genetic Algorithm Implementation Assignment

Introduction

• The code is more or less a direct translation of the high level
functions

• Written in C++11, so we have complete control with nice
abstractions

• You’ll need the -std=c++0x flag for g++
• The language should not be the main hurdle, if there’s

anything you don’t understand about the provided code, feel
free to talk to me

• I only used standard library functions, link to documentation
is in the handout

• Used typedef’s so you should be able to change data
structures if you want (you can use a string for an index
instead of an unsigned int even)

Lecture 22 - Assignment 3 Background University of Waterloo

Genetic Algorithm Implementation Assignment

Built-in Data Structures

• vector - basically an array
• unordered_map - basically a hash table

• Other hash table structures like unordered_set (no
associated values) may be useful

• pair - class with two elements, first and second with
associated types

• iterator - abstraction for pointers with containers

Lecture 22 - Assignment 3 Background University of Waterloo

Genetic Algorithm Implementation Assignment

Data Structures

• distance_map - a lookup table for distances between cities,
implemented with a 2 dimensional hash map (distances
calculated in constructor)

• individual - consists of a tour and a double, which may
represent either distance, fitness, normalized fitness or
accumulated fitness

• tour - a tour_container, be default a vector of indexes
• Does not include the first index, that is defined by

first_index
• metadata - a union to all doubles, since we don’t need

distance/fitness/etc. values all at the same time
• population - a vector of individuals
• best_individual - self explanatory

Lecture 22 - Assignment 3 Background University of Waterloo

Genetic Algorithm Implementation Assignment

Functions

• iteration - performs one iteration of the genetic algorithm,
it replaces population with a new population

• Before iteration is called, it is assumed all individuals in the
current population have a valid value of distance for its
metadata

• distance - calculates the distance of a tour
• selection - returns 100 (population size) pairs of iterators to

individuals in the current population to use for crossovers
• crossover - same as high-level explaination, returns a new

individual
• mutate - same as high-level explainatoin, modifies an

individual

Lecture 22 - Assignment 3 Background University of Waterloo

Genetic Algorithm Implementation Assignment

Algorithms

All of the C++ built-in algorithms work with anything using the
standard container interface

• max_element - returns an iterator the the largest element,
you can use your own comparator function

• min_element - same as above, but the smallest element
• sort - sorts a container, you can use your own comparator

function
• upper_bound - returns an iterator to the first element greater

than the value, only works on a sorted container (if the
default comparator isn’t used, you have to use the same one
used to sort the container)

• random_shuffle - does n random swaps of the elements in
the container

Lecture 22 - Assignment 3 Background University of Waterloo

Genetic Algorithm Implementation Assignment

Some Hurdles

If you’ve worked with C++ before, you probably know the awful
compiler messages and pages of template expansions

• You can use clang if you have a compiler error, and let it
show you the error instead -std=c++11

• For the profiler messages, it might get pretty bad, look for one
of the main functions, or if it’s a weird name, look where it’s
called from

• You can use Google Perf Tools to help break it down, more
fine grained

Lecture 22 - Assignment 3 Background University of Waterloo

Genetic Algorithm Implementation Assignment

Example Profiler Function Output

[3 2] s t d : : _Hashtable<uns i gned i n t , s t d : : p a i r <uns i gned i n t
const , s t d : : unordered_map<uns i gned i n t , double , s t d : :
hash<uns i gned i n t >, s t d : : equal_to<uns i gned i n t >, s t d : :
a l l o c a t o r <s t d : : p a i r <uns i gned i n t const , double> > > >,
s t d : : a l l o c a t o r <s t d : : p a i r <uns i gned i n t const , s t d : :
unordered_map<uns i gned i n t , double , s t d : : hash<uns i gned
i n t >, s t d : : equal_to<uns i gned i n t >, s t d : : a l l o c a t o r <s t d : :
p a i r <uns i gned i n t const , double> > > > >, s t d : :
_ S e l e c t 1 s t <s t d : : p a i r <uns i gned i n t const , s t d : :
unordered_map<uns i gned i n t , double , s t d : : hash<uns i gned
i n t >, s t d : : equal_to<uns i gned i n t >, s t d : : a l l o c a t o r <s t d : :
p a i r <uns i gned i n t const , double> > > > >, s t d : : equa l_to<
uns i gned i n t >, s t d : : hash<uns i gned i n t >, s t d : : __d e ta i l : :
_Mod_range_hashing , s t d : : __de ta i l : : _Default_ranged_hash ,

s t d : : __de ta i l : : _Pr ime_rehash_pol icy , f a l s e , f a l s e , t rue
>: : c l e a r ()

is actually distance_map.clear(), which is automatically called
by the destructor

Lecture 22 - Assignment 3 Background University of Waterloo

Genetic Algorithm Implementation Assignment

Things You Can Do

Well, it’s the most basic implemenation, so their should be a lot
you can do

• You can introduce threads, using pthreads (or C++11
threads, although they’re still missing a bunch), OpenMP, or
whatever you want

• Play around with compiler options
• Use better algorithms or data strutures
• The list goes on and on

Lecture 22 - Assignment 3 Background University of Waterloo

Genetic Algorithm Implementation Assignment

Things You Need to Do
Profile!

• Keep your number of iterations constant between all profiling
results so they’re comparable

• Baseline profile with no changes
• You will pick your two best performance changes to add to

the report
• You will include a profiling report before the change and just

after the change (and only that change!)
• More specific instructions in the handout

• There may or may not be overlapping between the baseline
and the baseline for each change

• My recommendation: use your initial baseline as the “before”
for your first change, and the “after” of the first change for
the baseline of your second change

• Whatever you choose, it should be convincing
Lecture 22 - Assignment 3 Background University of Waterloo

Genetic Algorithm Implementation Assignment

Things To Notice

• As you increase the number of iterations, your best answer
should get better

• Therefore, the faster your program, the more iterations you
can do and the better answer you should be able to get in 10
seconds

• The optimal answer is 7542
• Your program will be run on ece459-1 (or equivalent),

probably giving you 10 seconds to do as much work as you can
• We will have some type of leaderboard, so the eariler you have

some type of submission, the better

Lecture 22 - Assignment 3 Background University of Waterloo

Genetic Algorithm Implementation Assignment

A Word

This assignment should be enjoyable

Lecture 22 - Assignment 3 Background University of Waterloo

	Genetic Algorithm
	Implementation
	Assignment

