
Lecture 23 - Midterm Solution/Review
ECE 459: Programming for Performance

Jon Eyolfson

University of Waterloo

March 7, 2012

Midterm Distribution

(5
0

,
5

5
]

(5
5

,
6

0
]

(6
0

,
6

5
]

(6
5

,
7

0
]

(7
0

,
7

5
]

(7
5

,
8

0
]

(8
0

,
8

5
]

(8
5

,
9

0
]

(9
0

,
9

5
]

(9
5

,
1

0
0

]

0

5

10

15

20

25

Lecture 23 - Midterm Solution/Review University of Waterloo

Midterm Results

Average: 86
• Question 1 Average: 92
• Question 2 Average: 80
• Question 3 Average: 90
• Question 4 Average: 82

If you have any problem with the grading, you have 1 week to
bring it up

Lecture 23 - Midterm Solution/Review University of Waterloo

Question 1

Definitions
• All definitions are in lectures 3-7, I’ll just include one

Task parallelism is the simultaneous execution on multiple cores
of many different functions across the same or different datasets.

Data parallelism (aka SIMD) is the simultaneous execution on
multiple cores of the same function across the elements of a
dataset.

Lecture 23 - Midterm Solution/Review University of Waterloo

Question 2

Consider a program which has a serial and parallelizable
component. The serial component executes in 2 seconds and the
parallel component executes in 8 seconds, for a total runtime of 10
seconds when run serially.

Part 1
Assume the problem size is fixed. Calculate how many processors
would you need to reach a desired speedup of 3.75.

Lecture 23 - Midterm Solution/Review University of Waterloo

Question 2 Part 1 Solution

Using fractions:

S = 0.2

P = 0.8

speedup = 1
S+ P

N

0.2+ 0.8
N = 1

3.75

0.8
N = 4

15 − 3
15

N =
12
15
1
15

N = 12

Lecture 23 - Midterm Solution/Review University of Waterloo

Question 2 Part 2

For the same problem, now assume the problem size is not fixed.
We have 4 processors and the serial runtime is constant for any
problem size (larger problems only require that the parallel
component runs for longer), which is 2 seconds.

Calculate how long the parallel component would have to run in a
parallel execution (in seconds) to reach the speedup of 3.75.

Next, calculate how long the parallel component would run in a
serial execution under the same conditions.

Finally, assuming the problem size scales linearly with the
execution time, how many times larger did we have to make the
problem until we saw our desired scaling?

Lecture 23 - Midterm Solution/Review University of Waterloo

Question 2 Part 2 Solution (1)

Again, using fractions:

S(n) = 2
2+x

P(n) = x
2+x

where x is the runtime in the parallel execution (in seconds)

Plug in the numbers into the equation:

speedup = S(n) + N · P(n)

3.75 = 2
2+x + 4 · x

2+x

4x + 2 = 7.5+ 3.75x

x = 5.5
0.25 = 22

Lecture 23 - Midterm Solution/Review University of Waterloo

Question 2 Part 2 Solution (2)

x = 5.5
0.25 = 22

x is the runtime in the parallel execution (in seconds)

Parallel component, time of execution in parallel (s) = 22

Parallel component, time of execution in serial (s)
= 22 · 4 = 88

How many times larger is the problem
= Above answer / 8 (s) = 11

Lecture 23 - Midterm Solution/Review University of Waterloo

Question 3

Consider the following code:
v o i d swap (i n t ∗x , i n t ∗y) {

i n t t = ∗x ;
∗x = ∗y ;
∗y = t ;

}

For this question, assume the following global variables: int a =
1, b = 2, c = 3.

Part 1
Let’s say we have two threads, one calls swap(&b, &a) and the
other swap(&b, &c). Write down all possible expected outputs of
the values of the variables after the calls complete, assuming the
code is thread-safe.

Lecture 23 - Midterm Solution/Review University of Waterloo

Question 3 Part 1 Solution

If a function is thread-safe, it’s effect is going to be the same as if
the threads executed the function one after another in an
undefined order

swap(&b, &a) first - a = 2, b = 3, c = 1
swap(&b, &c) first - a = 3, b = 1, c = 2

are the two expected outputs

Lecture 23 - Midterm Solution/Review University of Waterloo

Question 3 Part 2

Assume each line of code is atomic. Write down an interleaving of
the code in two separate threads that shows this function is not
thread-safe along with the final output. That is, your output
should not match either expected result you found in Part 1.

Lecture 23 - Midterm Solution/Review University of Waterloo

Question 3 Part 2 Solution

swap(&b, &a) swap(&b, &c) a b c
t = b (2) 1 2 3

t = b (2) 1 2 3
b = c 1 3 3
c = t (2) 1 3 2

b = a 1 1 2
a = t (2) 2 1 2

This is not an expected outputs (since there is a data-race to b)

Reminder: you can spot a data-race by two accesses to the same
memory location, one of which is a write

Lecture 23 - Midterm Solution/Review University of Waterloo

Question 3 Part 3

Explain briefly (one sentence) what the restrict keyword does.
Assume we declare both pointers with a restrict keyword.
Would this make the function thread-safe? Explain why or why
not. If it does make the function thread-safe, ignore the locking
portion when completing Part 4.

Lecture 23 - Midterm Solution/Review University of Waterloo

Question 3 Part 3 Solution

The restrict keyword tells the compiler that a pointer will never
alias (point to the same location) for the lifetime of the pointer

It would not make this function thread-safe. For these function
calls, declaring the pointers as restrict would change nothing.
For each call in the question, each pointer does point to a different
location already. Letting the compiler know wouldn’t change
anything to do with concurrency.

restrict is present to allow the compiler to make optimizations
to serial code. You are responsible for ensuring there are no
data-races. (Insert Smokey Bear reference here).

Lecture 23 - Midterm Solution/Review University of Waterloo

Question 3 Part 4

Assume in your code you create a mutex, m, and properly destroy it
when the program ends(!). Write below where you would lock and
unlock the mutex to make the code thread-safe (pseudocode like
lock(m) is okay). Use the finest-grain locking possible with a
single lock.

Show what happens with the same interleaving (that you used in
Part 2) on your modified code, now with locks. Verify you get one
of the expected outputs. Explain why the code is now thread-safe
in all cases.

My intention of “all cases” was for any arguments, but I wasn’t
clear enough

Lecture 23 - Midterm Solution/Review University of Waterloo

Question 3 Part 4 Solution

1 v o i d swap (i n t ∗x , i n t ∗y) {
2 l o c k (m) ;
3 i n t t = ∗x ;
4 ∗x = ∗y ;
5 ∗y = t ;
6 un lock (m) ;
7 }

This code is thread-safe, because with a lock around the entire
function, it follows the definition
It is thread-safe in all cases because there is no data-races, no two
threads can access the same location (with one being a write)
A lock only around lines 3 and 4 above, will not protect any data
races involving the location of y. For the given example, y is a
different location and is not involved in a race. Example: switch
the arguments in one, or both calls, you should see a lock
around lines 3 and 4 is not thread-safe

Lecture 23 - Midterm Solution/Review University of Waterloo

Question 3 Part 4 Solution

swap(&b, &a) swap(&b, &c) a b c
lock(m) 1 2 3
t = b (2) 1 2 3

blocked 1 2 3
b = a 1 1 3
a = t (2) 2 1 3
unlock(m) 2 1 3

lock(m) 2 1 3
t = b (1) 2 1 3
b = c 2 3 3
c = t (1) 2 3 1
unlock(m) 2 3 1

Lecture 23 - Midterm Solution/Review University of Waterloo

Question 4 Part 1 (1)

Consider the following code:
z = long_ca lc_a (x)
x = long_ca lc_b (y)
i = long_ca lc_a (x) + z
j = long_ca lc_c (x) + y

List all RAW (read after write), WAR (write and read) and WAW
(write after write) dependencies of the variables, along with their
type in the provided table below.

Lecture 23 - Midterm Solution/Review University of Waterloo

Question 4 Part 1 Solution (1)

Variable First Line Second Line Type of Dependency
x 1 2 WAR (write after read)
z 1 3 RAW (read after write)
x 2 3 RAW (read after write)
x 2 4 RAW (read after write)

Lecture 23 - Midterm Solution/Review University of Waterloo

Question 4 Part 1 (2)

Now, assume the following runtimes for each function (which do
not executive speculatively):

long_calc_a = 2 seconds
long_calc_b = 1 second
long_calc_c = 3 seconds

Show how you minimize the runtime of the code using any number
of processors. Assume the cost of reading/writing/copying
variables is 0. Clearly identify what lines can run in parallel.

What is the minimum amount of time required to execute the code
in parallel?

Lecture 23 - Midterm Solution/Review University of Waterloo

Question 4 Part 1 Solution (2)

We can remove the dependency between lines 1 and 2 by making a
copy of x

Line 3 depends on lines 1 and 2
Line 4 depends only on line 2
Therefore, we can execute lines 1 and 2 in parallel
We can execute line 4 right after line 2 completes
We can execute line 3 right after lines 1 and 2 complete
Line 3 completes in 2 seconds after line 1 (slowest, 2 seconds) for a
total of 4 seconds
Line 4 completes in 3 seconds after line 2 (1 second) for a total of
4 seconds
Therefore the minimum runtime is the maximum between lines 3
and 4, which is 4 seconds

Lecture 23 - Midterm Solution/Review University of Waterloo

Question 4 Part 2 (1)

Consider the following code:
f o r (i n t i = 0 ; i < 5 ; ++i) {

a [i + 1] = a [i % 3] ;
}

Show how you would minimize the runtime of the loop using any
number of processors. Assume that each iteration of the loop takes
1 unit of time. Clearly identify which iterations are run
sequentially/in parallel. For parallel execution, show which
processor executes each iteration.

What is the minimum amount of time required to execute the code
in parallel?

Lecture 23 - Midterm Solution/Review University of Waterloo

Question 4 Part 2 Solution (1)

Let’s unroll the loop to get an idea what’s going on
0 a [1] = a [0] ;
1 a [2] = a [1] ;
2 a [3] = a [2] ;
3 a [4] = a [0] ;
4 a [5] = a [1] ;

i = 1 and i = 4 depends on i = 0
i = 2 depends on i = 1

Therefore you’re going to need a least 3 time units, as you’re
bounded by the dependencies

Naive answer is to just throw all iterations but i = 3 into a thread
to execute sequentially

Lecture 23 - Midterm Solution/Review University of Waterloo

Question 4 Part 2 Solution cont. (1)

You may also notice that there are only 3 read memory locations 0,
1, 2
There are two options for showing how you can execute all
iterations in 3 time units:

Option 1:
Do i = 0, then i = 1 sequentially. Now there are no
dependencies, each iteration can go in it’s own thread

Option 2:
Do all operations that read element 0 in different threads, have an
implicit barrier, then do all the operations that read element 1 in
different threads, do another implicit barrier, then finally do all the
operations that read element 2

Lecture 23 - Midterm Solution/Review University of Waterloo

Question 4 Part 2 (2)

What is the minimum amount of time required to execute the code
in parallel if there are 100 iterations of the loop (assuming again,
there’s an unlimited number of processors)?

My intention was to give you an example that would make giving
this answer with the naive solution too messy so you would rethink
how you did the question.

Lecture 23 - Midterm Solution/Review University of Waterloo

Question 4 Part 2 Solution (2)

Following our options from the first part, if we do more iterations
that will not change our runtime (it will require more processors
however). Our runtime will remain as 3 time units.

Option 1:
Requires 98 processors

Option 2:
Requires 34 processors

Lecture 23 - Midterm Solution/Review University of Waterloo

