
Lecture 25 - Features of OpenCL
ECE 459: Programming for Performance

Jon Eyolfson

University of Waterloo

March 12, 2012

Introduction

• This is an example of programming for a heterogeneous
architecture

• We’re no longer using the general CPU, we’ll also leverage the
GPU

• We’ll be looking at OpenCL (i.e. Open Computing Language)
• Usable on both NVIDIA and AMD GPUs

Lecture 25 - Features of OpenCL University of Waterloo

SIMT

Another term you may see vendors using:
• Single Instruction, Multiple Threads
• Runs on a vector of data
• This is similar to SIMD instructions (for example SSE)

• However, its spread out on the GPU

Lecture 25 - Features of OpenCL University of Waterloo

Other Examples

• PlayStation 3 Cell

• CUDA

Lecture 25 - Features of OpenCL University of Waterloo

Cell Overview

Cell consists of
• PowerPC core
• 8 SIMD co-processors

(from the Linux Cell documentation)
Lecture 25 - Features of OpenCL University of Waterloo

CUDA Overview

• Compute Unified Device Architecture

• NVIDIA’s architecture for processing on GPUS

• “C for CUDA” predates OpenCL, NVIDIA supports it first and
foremost

• May be faster than OpenCL on NVIDIA hardware
• API allows you to use (most) C++ features in CUDA code,

not in OpenCL

Lecture 25 - Features of OpenCL University of Waterloo

Programming Model

The abstract model is simple:
• Write the code for the parallel computation (kernel) separately

from main code
• Transfer the data to the GPU co-processor (or execute it on

the CPU)
• Wait
• Transfer the results back

Lecture 25 - Features of OpenCL University of Waterloo

Data Parallelism

• You are evaluating a function (or kernel) on a set of points
(data)

• This is another example of data parallelism
• Another name for the set of points is the index space
• Each of the points corresponds to a work-item

Note: OpenCL also supports task parallelism (using different
kernels), but the documentation doesn’t say too much

Lecture 25 - Features of OpenCL University of Waterloo

Work-Items

• This is the fundamental unit of work in OpenCL
• They are stored in an n-dimensional grid (ND-Range)
• OpenCL spawns a bunch of threads for the work-items
• When executing, the range is divided into work-groups which

execute on the same compute unit
• The set of compute units (or cores) is called something

different depending on the manufacturer
• NVIDIA - warp
• AMD/ATI - wavefront

Lecture 25 - Features of OpenCL University of Waterloo

Shared Memory

There are many different types of memory available to you:
• private memory: available to a single work-item;
• local memory (aka “shared memory”): shared between

work-items belonging to the same work-group, like a
user-managed cache;

• global memory: shared between all work-items as well as the
host;

• constant memory: resides on the GPU and cached. Does not
change.

Lecture 25 - Features of OpenCL University of Waterloo

Example Kernel

• Here’s some traditional code to multiple an array by two arrays

vo id t r a d i t i o n a l _ m u l (i n t n , const f l o a t ∗a , const f l o a t ∗b ,
f l o a t ∗c) {

i n t i ;
f o r (i = 0 ; i < n ; i ++) c [i] = a [i] ∗ b [i] ;

}

• This is the same code as a kernel

k e r n e l vo id opencl_mul (g l o b a l const f l o a t ∗a ,
g l o b a l const f l o a t ∗b ,
g l o b a l f l o a t ∗c) {

i n t i d = g e t _ g l o b a l _ i d (0) ; // d imens ion 0
c [i d] = a [i d] ∗ b [i d] ;

}

Lecture 25 - Features of OpenCL University of Waterloo

Restrictions

• No function pointers
• No bit-fields
• No variable length arrays
• No recursion
• No standard headers

Lecture 25 - Features of OpenCL University of Waterloo

Additions

• Work-items
• Work-groups
• Vectors
• Synchronization
• Declarations of memory type
• Library for kernels to use

Lecture 25 - Features of OpenCL University of Waterloo

Branches

• The computation from each work-item can branch arbitrarily
• The hardware will execute all branches that any thread in a

warp executed (with can be slow)

• This means an if statement will cause each thread to execute
both branches, keeping only the result of the appropriate
branch

• A loop will cause the workgroup to wait for the maximum
number of iterations of the loop in any work-item

Note: when you set up work-groups, you can arrange for all the
work-items in a workgroup to execute the same branches

Lecture 25 - Features of OpenCL University of Waterloo

Synchronization

• You can only put barriers and memory fences between
work-items in the same workgroup

• Reminder: the workgroups execute independently

Support for the following:
• Memory fences (load and store)
• Barriers
• volatile

Lecture 25 - Features of OpenCL University of Waterloo

Summary

• Brief overview of OpenCL and it’s programming model

• Many concepts are similar to plain parallel programming

• Again, reminder to e-mail me for Assignment 3 (anyone have
anything for the leaderboard?)

Lecture 25 - Features of OpenCL University of Waterloo

